Product Description
Micro DC Motor Electric Drive High Speed Electromagnetic Gear High Quality Phase Scooters Elevator Shaft Engine Drive Best Stepper Synchronous Motors
micro dc motor
Micro motor features
The main difference between our DC micro motors and conventional DC motors is in the rotor. The rotor doesn’t have an iron primary but consists of a self-assisting skew-wound copper winding. This featherweight rotor comes with an extremely low minute of inertia, and it rotates without cogging. The effect is the excellent dynamics of our motors. For low power micro motors, commutation systems using precious metals will be the optimum solution because of their low contact level of resistance.
Our precious steel commutated motors range in size from just 6 mm to 22 mm in diameter.
Micro motor benefits
Ideal for battery operated devices
No cogging
Incredibly low current consumption – low starting voltage
Highly dynamic performance due to a low inertia, low inductance winding
Light and compact
Precise speed control
Simple to control due to the linear performance characteristics
Application of Micro DC Motor
Micro DC motors are a type of electric motor that is typically smaller than 100 watts. They are characterized by their small size, low weight, and high efficiency. Micro DC motors are used in a wide variety of applications, including:
- Automotive: Micro DC motors are used in a variety of automotive applications, such as power windows, power seats, and sunroofs.
- Consumer electronics: Micro DC motors are used in a variety of consumer electronics applications, such as electric shavers, toothbrushes, and fans.
- Industrial: Micro DC motors are used in a variety of industrial applications, such as robotics, automation, and machine tools.
- Medical: Micro DC motors are used in various medical applications, such as pacemakers, insulin pumps, and surgical instruments.
Micro DC motors are a versatile type of motor that can be used in various applications. They are a reliable and efficient way to convert electrical energy into mechanical energy.
Here are some of the benefits of using micro DC motors:
- Small size: Micro DC motors are typically smaller than 100 watts, which makes them ideal for applications where space is limited.
- Low weight: Micro DC motors are lightweight, which makes them easy to transport and install.
- High efficiency: Micro DC motors are highly efficient, which means they can produce much power for their size.
- Low noise: Micro DC motors are typically tranquil, which makes them ideal for applications where noise is a concern.
- Long life: Micro DC motors can have a long service life, which means they can save you money in the long run.
If you are looking for a reliable and efficient way to convert electrical energy into mechanical energy, a micro DC motor is a good option. They are available in various sizes and power ratings, and they can be customized to meet the specific needs of your application.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industrial |
---|---|
Speed: | High Speed |
Number of Stator: | Three-Phase |
Function: | Driving, Control |
Casing Protection: | Open Type |
Number of Poles: | 6 |
Samples: |
US$ 9999/Piece
1 Piece(Min.Order) | |
---|
Can micro gear motors be customized for specific applications, and how is this achieved?
Yes, micro gear motors can be customized to meet the specific requirements of different applications. Customization allows for the optimization of motor performance, size, and features to best suit the intended use. Here’s how customization of micro gear motors is achieved:
- Motor Sizing: The customization process begins with determining the appropriate motor size for the application. Factors such as required torque, speed, power consumption, and physical dimensions are considered to select a motor that can deliver the desired performance within the constraints of the application.
- Gear Ratio Selection: The gear ratio determines the relationship between the motor’s speed and the output shaft’s speed. By selecting different gear ratios, the torque and speed characteristics of the micro gear motor can be tailored to match the specific requirements of the application. Higher gear ratios provide more torque at the expense of speed, while lower gear ratios offer higher speed at the expense of torque.
- Mounting and Integration: Micro gear motors can be customized to facilitate easy integration into the target system or device. Mounting options, such as flanges or brackets, can be designed to ensure secure attachment. Additionally, custom shaft configurations, connectors, and wiring options can be implemented to simplify the motor’s integration into the overall system.
- Environmental Considerations: Customization may involve adapting the micro gear motor to operate in specific environmental conditions. For example, if the motor will be exposed to moisture, dust, or extreme temperatures, protective measures such as sealing, specialized coatings, or thermal management solutions can be incorporated into the motor’s design.
- Control and Feedback: In some applications, customization may involve integrating specific control and feedback mechanisms into the micro gear motor. This can include position sensors, encoders, or communication interfaces that enable precise control, feedback, and integration with other system components or devices.
- Specialized Materials and Components: Custom micro gear motors can utilize specialized materials and components to meet unique application requirements. This may involve using specific gear materials, bearings, or insulation materials that offer enhanced performance, durability, or resistance to certain environmental factors.
- Performance Optimization: Customization allows for fine-tuning the micro gear motor’s performance to achieve optimal efficiency, power output, or response characteristics for the specific application. This can involve adjusting motor parameters, control algorithms, or utilizing advanced motor technologies to meet specific performance goals.
Overall, customization of micro gear motors is achieved through a combination of careful motor selection, design modifications, incorporation of specialized features and materials, and optimization of performance parameters. Collaborating with motor manufacturers or engineering firms with expertise in micro gear motors can help tailor the motor to the exact requirements of the application.
Can you provide examples of innovative uses of micro gear motors in modern technology?
Micro gear motors have found innovative applications across various modern technologies. Here are some examples:
- Drones: Micro gear motors are commonly used in drones to drive the propellers and control the flight. Their compact size, lightweight design, and precise control capabilities make them ideal for achieving stable and agile flight maneuvers.
- Robotics: Micro gear motors play a crucial role in robotics, powering the joints and actuators of robotic arms, grippers, and humanoid robots. Their precise control, compact form factor, and high torque-to-size ratio enable robots to perform delicate and precise manipulations in industrial automation, medical procedures, and research applications.
- Automotive Systems: Micro gear motors are used in various automotive systems, such as power windows, door locks, and seat adjustments. Their small size and high torque allow for efficient and reliable operation of these mechanisms within the limited space available in vehicles.
- Medical Devices: Micro gear motors are utilized in medical devices and equipment, including surgical robots, prosthetics, insulin pumps, and lab automation systems. Their precise control, compact size, and low power consumption make them suitable for applications requiring fine movements, accurate dosing, and miniaturization.
- Consumer Electronics: Micro gear motors are incorporated into numerous consumer electronic devices. They can be found in cameras for lens movement and autofocus, wearable devices for haptic feedback and vibration, and home appliances for precise control of valves, fans, and robotic components.
- Smart Home Systems: Micro gear motors are employed in smart home systems to control various functions, such as motorized curtains, blinds, and awnings. Their precise control, quiet operation, and compatibility with automation systems allow for convenient and customizable control of these home features.
These examples represent just a few of the many innovative uses of micro gear motors in modern technology. Their versatility, precision, and compact design make them valuable components in a wide range of applications, contributing to advancements in automation, robotics, electronics, and beyond.
What types of gears are typically employed in micro gear motors for efficient power transmission?
Micro gear motors utilize various types of gears to achieve efficient power transmission. Here are some commonly employed gear types in micro gear motors:
1. Spur Gears:
Spur gears are the most basic and commonly used gears in micro gear motors. They have straight teeth and are mounted on parallel shafts. Spur gears provide efficient power transmission with low noise and high efficiency. They are suitable for applications that require high-speed rotation and moderate torque requirements.
2. Helical Gears:
Helical gears are similar to spur gears but have angled teeth. The angled teeth allow for smoother and quieter operation compared to spur gears. Helical gears provide higher torque transmission capabilities and are commonly used in micro gear motors where reducing noise and vibration is important, such as in precision instruments or small appliances.
3. Planetary Gears:
Planetary gears, also known as epicyclic gears, are compact gear systems that consist of a central gear (sun gear), multiple surrounding gears (planet gears), and an outer ring gear (ring gear). Planetary gears offer high torque transmission capabilities in a compact design. They are commonly used in micro gear motors where a high gear ratio and torque multiplication are required, such as in robotics or automation systems.
4. Worm Gears:
Worm gears consist of a worm (a screw-like gear) and a mating gear called a worm wheel. Worm gears provide a high gear reduction ratio and are suitable for applications that require high torque output and low-speed rotation. They are commonly used in micro gear motors for applications such as valve actuators, conveyor systems, or precision positioning devices.
5. Bevel Gears:
Bevel gears have teeth that are cut on conical surfaces and are used to transmit power between intersecting shafts. They are commonly employed in micro gear motors that require changes in direction or angle of power transmission. Bevel gears provide efficient power transfer and can accommodate a wide range of speed and torque requirements.
6. Hypoid Gears:
Hypoid gears are similar to bevel gears but have offset axes. They are used in micro gear motors that require high torque transmission at right angles. Hypoid gears offer efficient power transmission with reduced noise and vibration, making them suitable for applications that require compact and quiet operation.
7. Rack and Pinion:
Rack and pinion gears consist of a linear gear (rack) meshing with a rotational gear (pinion). They are commonly used in micro gear motors for linear motion applications, such as in CNC machines, 3D printers, or small-scale automation systems. Rack and pinion gears provide efficient and precise linear motion control.
These are some of the common types of gears employed in micro gear motors for efficient power transmission. The choice of gear type depends on the specific requirements of the application, including torque, speed, noise level, and space constraints.
editor by CX 2024-05-15
China Best Sales Micro DC Motor Electric Drive High Speed Electromagnetic Gear High Quality Phase Scooters Elevator Shaft Engine Drive Best Stepper Synchronous Motors vacuum pump diy
Product Description
Micro DC Motor Electric Drive High Speed Electromagnetic Gear High Quality Phase Scooters Elevator Shaft Engine Drive Best Stepper Synchronous Motors
micro dc motor
Micro motor features
The main difference between our DC micro motors and conventional DC motors is in the rotor. The rotor doesn’t have an iron primary but consists of a self-assisting skew-wound copper winding. This featherweight rotor comes with an extremely low minute of inertia, and it rotates without cogging. The effect is the excellent dynamics of our motors. For low power micro motors, commutation systems using precious metals will be the optimum solution because of their low contact level of resistance.
Our precious steel commutated motors range in size from just 6 mm to 22 mm in diameter.
Micro motor benefits
Ideal for battery operated devices
No cogging
Incredibly low current consumption – low starting voltage
Highly dynamic performance due to a low inertia, low inductance winding
Light and compact
Precise speed control
Simple to control due to the linear performance characteristics
Application of Micro DC Motor
Micro DC motors are a type of electric motor that is typically smaller than 100 watts. They are characterized by their small size, low weight, and high efficiency. Micro DC motors are used in a wide variety of applications, including:
- Automotive: Micro DC motors are used in a variety of automotive applications, such as power windows, power seats, and sunroofs.
- Consumer electronics: Micro DC motors are used in a variety of consumer electronics applications, such as electric shavers, toothbrushes, and fans.
- Industrial: Micro DC motors are used in a variety of industrial applications, such as robotics, automation, and machine tools.
- Medical: Micro DC motors are used in various medical applications, such as pacemakers, insulin pumps, and surgical instruments.
Micro DC motors are a versatile type of motor that can be used in various applications. They are a reliable and efficient way to convert electrical energy into mechanical energy.
Here are some of the benefits of using micro DC motors:
- Small size: Micro DC motors are typically smaller than 100 watts, which makes them ideal for applications where space is limited.
- Low weight: Micro DC motors are lightweight, which makes them easy to transport and install.
- High efficiency: Micro DC motors are highly efficient, which means they can produce much power for their size.
- Low noise: Micro DC motors are typically tranquil, which makes them ideal for applications where noise is a concern.
- Long life: Micro DC motors can have a long service life, which means they can save you money in the long run.
If you are looking for a reliable and efficient way to convert electrical energy into mechanical energy, a micro DC motor is a good option. They are available in various sizes and power ratings, and they can be customized to meet the specific needs of your application.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industrial |
---|---|
Speed: | High Speed |
Number of Stator: | Three-Phase |
Function: | Driving, Control |
Casing Protection: | Open Type |
Number of Poles: | 6 |
Samples: |
US$ 9999/Piece
1 Piece(Min.Order) | |
---|
Where can individuals find reputable suppliers or manufacturers of micro gear motors?
Individuals looking for reputable suppliers or manufacturers of micro gear motors can consider the following reliable sources:
- Online Directories: Online directories, such as Thomasnet, Alibaba, or GlobalSpec, provide comprehensive listings of suppliers and manufacturers across various industries. These directories often include detailed profiles, product catalogs, and customer reviews, making it easier to evaluate and connect with reputable micro gear motor suppliers.
- Trade Shows and Exhibitions: Attending industry-specific trade shows and exhibitions offers an excellent opportunity to meet and connect with reputable micro gear motor manufacturers and suppliers. These events gather industry professionals, showcase the latest technologies, and provide a platform for networking and establishing business relationships.
- Industry Associations: Industry associations, such as the Robotics Industries Association (RIA) or the National Electrical Manufacturers Association (NEMA), can provide valuable resources and directories of reputable micro gear motor manufacturers and suppliers. These associations often have strict membership criteria, ensuring that listed companies adhere to industry standards and best practices.
- Referrals and Recommendations: Seek referrals or recommendations from colleagues, industry experts, or professionals who have experience working with micro gear motors. Their firsthand experiences can provide insights into reputable manufacturers or suppliers known for their quality products, reliable services, and customer support.
- Online Research and Reviews: Conducting online research allows individuals to explore various manufacturers or suppliers of micro gear motors. Look for websites, online forums, or discussion boards that provide reviews, ratings, or testimonials from customers. Reading unbiased experiences and feedback can help identify reputable companies that consistently deliver high-quality products and excellent customer service.
- Consulting with Industry Experts: Seek advice from industry experts, engineers, or consultants who specialize in micro gear motors. They often have extensive knowledge of the market, industry trends, and reputable manufacturers or suppliers. Consulting with experts can provide valuable insights and guidance in selecting the right supplier for specific requirements.
It is important to conduct due diligence when evaluating suppliers or manufacturers. Consider factors such as their reputation, years of experience in the industry, product quality, certifications, customer support, and delivery capabilities. Request samples, specifications, or references to assess their suitability for the intended application.
By utilizing these sources and conducting thorough research, individuals can find reputable suppliers or manufacturers of micro gear motors that meet their specific needs and ensure reliable and high-quality products.
What challenges or limitations might be associated with the use of micro gear motors?
Micro gear motors, despite their many advantages, also come with certain challenges and limitations. Here are some of them:
- Size and Space Constraints: Micro gear motors are designed to be compact and small in size, which can be advantageous in many applications. However, the small size can also limit the power output and torque capabilities of the motor, making them unsuitable for applications that require high power or high torque.
- Heat Dissipation: Micro gear motors can generate heat during operation, especially when subjected to high loads or continuous use. The compact size and limited surface area of the motor can make heat dissipation challenging, potentially leading to overheating and reduced performance or lifespan. Proper heat dissipation strategies such as cooling fans or heat sinks may be required in certain applications.
- Noise and Vibration: Due to the mechanical nature of gear systems, micro gear motors can produce noise and vibration during operation. The noise and vibration levels can vary depending on the quality of the gears and the design of the motor. In applications where noise or vibration is a concern, additional measures such as noise-reducing enclosures or vibration dampening techniques may be necessary.
- Limited Lifespan: Micro gear motors, like any mechanical system, have a limited lifespan. The continuous operation, high loads, and friction within the gear system can contribute to wear and tear over time. Regular maintenance, lubrication, and periodic replacement of worn-out components may be required to ensure optimal performance and longevity.
- Cost: Micro gear motors, especially those with advanced features or high precision, can be relatively expensive compared to other motor types. The cost of manufacturing, materials, and specialized components can contribute to the overall cost. Additionally, the need for additional accessories such as controllers or drivers may further increase the cost of implementing micro gear motors in certain applications.
Despite these challenges and limitations, micro gear motors offer unique advantages and are suitable for a wide range of applications. Understanding the specific requirements and limitations of the motor can help in selecting the appropriate type and optimizing its performance in a given application.
What types of gears are typically employed in micro gear motors for efficient power transmission?
Micro gear motors utilize various types of gears to achieve efficient power transmission. Here are some commonly employed gear types in micro gear motors:
1. Spur Gears:
Spur gears are the most basic and commonly used gears in micro gear motors. They have straight teeth and are mounted on parallel shafts. Spur gears provide efficient power transmission with low noise and high efficiency. They are suitable for applications that require high-speed rotation and moderate torque requirements.
2. Helical Gears:
Helical gears are similar to spur gears but have angled teeth. The angled teeth allow for smoother and quieter operation compared to spur gears. Helical gears provide higher torque transmission capabilities and are commonly used in micro gear motors where reducing noise and vibration is important, such as in precision instruments or small appliances.
3. Planetary Gears:
Planetary gears, also known as epicyclic gears, are compact gear systems that consist of a central gear (sun gear), multiple surrounding gears (planet gears), and an outer ring gear (ring gear). Planetary gears offer high torque transmission capabilities in a compact design. They are commonly used in micro gear motors where a high gear ratio and torque multiplication are required, such as in robotics or automation systems.
4. Worm Gears:
Worm gears consist of a worm (a screw-like gear) and a mating gear called a worm wheel. Worm gears provide a high gear reduction ratio and are suitable for applications that require high torque output and low-speed rotation. They are commonly used in micro gear motors for applications such as valve actuators, conveyor systems, or precision positioning devices.
5. Bevel Gears:
Bevel gears have teeth that are cut on conical surfaces and are used to transmit power between intersecting shafts. They are commonly employed in micro gear motors that require changes in direction or angle of power transmission. Bevel gears provide efficient power transfer and can accommodate a wide range of speed and torque requirements.
6. Hypoid Gears:
Hypoid gears are similar to bevel gears but have offset axes. They are used in micro gear motors that require high torque transmission at right angles. Hypoid gears offer efficient power transmission with reduced noise and vibration, making them suitable for applications that require compact and quiet operation.
7. Rack and Pinion:
Rack and pinion gears consist of a linear gear (rack) meshing with a rotational gear (pinion). They are commonly used in micro gear motors for linear motion applications, such as in CNC machines, 3D printers, or small-scale automation systems. Rack and pinion gears provide efficient and precise linear motion control.
These are some of the common types of gears employed in micro gear motors for efficient power transmission. The choice of gear type depends on the specific requirements of the application, including torque, speed, noise level, and space constraints.
editor by CX 2024-05-14
China OEM Electric Customized DC Stepper Gear Geared Motor Supplier NEMA 8, 11, 14, 16, 17, 23, 34, 43 vacuum pump for ac
Product Description
NEMA 8, 11, 14, 16, 17, 23, 34, 43 customized Stepper Gear Motor supplier
Product Description
• Manufacturer Part Number: HP201 HP281 HP351 HP421
• Motor Type: Planetary Gearbox Stepper Motor Bipolar 4 Wires 2 Phase
• Frame Size: 20x20mm Geared Stepper Motor Nema 8, NEMA 11, NEMA14, NEMA17 Mounting
• Step Angle: 1.8deg, 0.9deg, 0.36deg
• Gearbox Effiency: 66%—90%
• Application: 3D Printer motor, Medical Equipment Motor, Ventilator motor
Drawing of NEMA 8 Hybrid Stepper Gear Motor:
Drawing of NEMA 11 Hybrid Stepper Gear Motor:
Drawing of NEMA 14 Hybrid Stepper Gear Motor:
Drawing of NEMA 17 Hybrid Stepper Gear Motor:
Drawing of NEMA 23 Hybrid Stepper Gear Motor:
Drawing of NEMA 34 Hybrid Stepper Gear Motor:
NEMA 8 Hybrid Stepper Gear Motor
Motor Electrical Specification | |||||||||
Series Model | Step Angle ( o ) | L (mm) |
Rated Current (A) | Phase Resistance (Ω) |
Phase Inductance (mH) |
Holding Torque (N.cm) |
Detent Torque (N.cm) | Lead Wire (NO.) |
Motor Weight ( g) |
HP201-57121 | 1.8 | 28 | 0.2 | 23 | 8.2 | 1.4 | 0.2 | 4 | 50 |
HP201-57121 | 1.8 | 34 | 0.2 | 25 | 8.4 | 1.8 | 0.3 | 4 | 70 |
HP201-0 0571 1 | 1.8 | 40 | 0.2 | 32 | 8.8 | 2.6 | 0.5 | 4 | 82 |
Other Motor Electrical Specification please refer to Hybrid Stepper Motor web |
Gearbox Specification | ||||||||||||||||
Ratio | 3.71 | 5.18 | 14 | 19 | 27 | 51 | 71 | 1 | 1.8 | 150 | 7 | 0.4 | 4.8 | 12 | 4 | 4.2 |
Gearbox Specification | ||||||||
Ratio | 5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 |
Reducer Series | 1 | 2 | ||||||
Length(mm) | 58 | 75 | ||||||
Rated Torque(N.m) | 25 | 40 | ||||||
Permissible Torque(Max)(N.m) | 45 | 60 | ||||||
Efficiency(%) | 95% | 90% | ||||||
Weight(g) | 600-800 | 800-960 | ||||||
We can manufacture products according to customer’s requirements |
The above inforamtion is just for your information. We could customized the products as your requirements.
Company Profile
PROFESSIONAL MOTOR MANUFACTURER
Founded in 2006, I.CH is a professional Micro Metal Gear Motor factory over 16years. We have worked with over 50 countries’ customers arround world. We have over 20 patents in gearbox field.
We focus on the development of planetary gearbox and matched different type of motors, such as DC brush motor, Brushless DC Motor, Stepper Motor and Servo Motor. Custom Service for micro gear motor with encoder and dual shaft in special specification, The light weight with high torque and low speed is widely used in a variety of industrial, home application and hobby appliance.
16+
Experience
50+
Countrie’s Customers
20+
Patents
1000+
Factory Area
Certifications
Customer Visiting
Welcom to visit our factory
Factory Ability
Packaging & Shipping
-Pack by PE foam in cartons, crates and pallets;
-Shipping via sea, air, courier;
-Lead-time: 3-8 weeks.
Related Products
We can also supply below products,
FAQ
Q1. What phase is this stepping motor?
A: It is 2 phase with 1.8deg.
Q2. What is frame size for NEMA 8 Step Geared motor?
A: It is 20mm*20mm size.
Q3. I need a non-standard motor for my application, can you help?
A: Certainly, most of our customers request custom configurations in 1 form or another. If you plan on replacing a motor in an existing application, just send us a drawing or sample and we can help you find a suitable replacement. Alternatively, contact us and describe your application, our engineers will work with you to create a solution tailor-made for you.
Q4:How can I get your quotation of electrical step engine?
A:Please send us the details of the stepper motors you are in need of, also includes the quantity.
Q. What are your Stepper Motors can be use to?
A: Our step motors can be use in CNC routers, CNC milling machine, engraving machine, packaging machine, filling machine, cutting machine, printing machine, laser machine, carving machine, labeling machine, CCTV and robot.
Q. What kind of Payment methods do you accept?
A: We can accept Paypal and , TT.
Q: What kind of shipping methods do you use?
A:1) For samples or small batch of micro stepper motor, air shipping is recommended. (DHL, Fedex, TNT, UPS, EMS), We will provide the tracking No. Once we get it after we ship out the products.
2)For mass production or big batch of stepping motors, CHINAMFG shipping/sea shipment is recommended .
Q: What is the lead time of stepper motors?
A: For mass production, the lead time depends on the quantities you need .
Q: What is your warranty time?
A: Warranty time: 12 months. And we provide life-long technical service and after-sale service.
Q: Can you make customized shaft?
A: We can make single shaft, double shaft or other shape.
Q: What is NEMA size of this motor?
A: It is NEMA 8 with 1.8 degree or 0.9 degree.
Q: What it the application for NEMA 8 StepperGeared Motor
A: It could used as 3D Printer motor. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Printing Equipment |
---|---|
Speed: | Low Speed |
Number of Stator: | Two-Phase |
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
What are the maintenance requirements for gear motors, and how can longevity be maximized?
Gear motors, like any mechanical system, require regular maintenance to ensure optimal performance and longevity. Proper maintenance practices help prevent failures, minimize downtime, and extend the lifespan of gear motors. Here are some maintenance requirements for gear motors and ways to maximize their longevity:
1. Lubrication:
Regular lubrication is essential for gear motors to reduce friction, wear, and heat generation. The gears, bearings, and other moving parts should be properly lubricated according to the manufacturer’s recommendations. Lubricants should be selected based on the motor’s specifications and operating conditions. Regular inspection and replenishment of lubricants, as well as periodic oil or grease changes, should be performed to maintain optimal lubrication levels and ensure long-lasting performance.
2. Inspection and Cleaning:
Regular inspection and cleaning of gear motors are crucial for identifying any signs of wear, damage, or contamination. Inspecting the gears, bearings, shafts, and connections can help detect any abnormalities or misalignments. Cleaning the motor’s exterior and ventilation channels to remove dust, debris, or moisture buildup is also important in preventing malfunctions and maintaining proper cooling. Any loose or damaged components should be repaired or replaced promptly.
3. Temperature and Environmental Considerations:
Monitoring and controlling the temperature and environmental conditions surrounding gear motors can significantly impact their longevity. Excessive heat can degrade lubricants, damage insulation, and lead to premature component failure. Ensuring proper ventilation, heat dissipation, and avoiding overloading the motor can help manage temperature effectively. Similarly, protecting gear motors from moisture, dust, chemicals, and other environmental contaminants is vital to prevent corrosion and damage.
4. Load Monitoring and Optimization:
Monitoring and optimizing the load placed on gear motors can contribute to their longevity. Operating gear motors within their specified load and speed ranges helps prevent excessive stress, overheating, and premature wear. Avoiding sudden and frequent acceleration or deceleration, as well as preventing overloading or continuous operation near the motor’s maximum capacity, can extend its lifespan.
5. Alignment and Vibration Analysis:
Proper alignment of gear motor components, such as gears, couplings, and shafts, is crucial for smooth and efficient operation. Misalignment can lead to increased friction, noise, and premature wear. Regularly checking and adjusting alignment, as well as performing vibration analysis, can help identify any misalignment or excessive vibration that may indicate underlying issues. Addressing alignment and vibration problems promptly can prevent further damage and maximize the motor’s longevity.
6. Preventive Maintenance and Regular Inspections:
Implementing a preventive maintenance program is essential for gear motors. This includes establishing a schedule for routine inspections, lubrication, and cleaning, as well as conducting periodic performance tests and measurements. Following the manufacturer’s guidelines and recommendations for maintenance tasks, such as belt tension checks, bearing replacements, or gear inspections, can help identify and address potential issues before they escalate into major failures.
By adhering to these maintenance requirements and best practices, the longevity of gear motors can be maximized. Regular maintenance, proper lubrication, load optimization, temperature control, and timely repairs or replacements of worn components contribute to the reliable operation and extended lifespan of gear motors.
Can you explain the role of backlash in gear motors and how it’s managed in design?
Backlash plays a significant role in gear motors and is an important consideration in their design and operation. Backlash refers to the slight clearance or play between the teeth of gears in a gear system. It affects the precision, accuracy, and responsiveness of the gear motor. Here’s an explanation of the role of backlash in gear motors and how it is managed in design:
1. Role of Backlash:
Backlash in gear motors can have both positive and negative effects:
- Compensation for Misalignment: Backlash can help compensate for minor misalignments between gears, shafts, or the load. It allows a small amount of movement before engaging the next set of teeth, reducing the risk of damage due to misalignment. This can be particularly beneficial in applications where precise alignment is challenging or subject to variations.
- Negative Impact on Accuracy and Responsiveness: Backlash can introduce a delay or “dead zone” in the motion transmission. When changing the direction of rotation or reversing the load, the gear teeth must first overcome the clearance or play before engaging in the opposite direction. This delay can reduce the overall accuracy, responsiveness, and repeatability of the gear motor, especially in applications that require precise positioning or rapid changes in direction or speed.
2. Managing Backlash in Design:
Designers employ various techniques to manage and minimize backlash in gear motors:
- Tight Manufacturing Tolerances: Proper manufacturing techniques and tight tolerances can help minimize backlash. Precision machining and quality control during the production of gears and gear components ensure closer tolerances, reducing the amount of play between gear teeth.
- Preload or Pre-tensioning: Applying a preload or pre-tensioning force to the gear system can help reduce backlash. This technique involves introducing an initial force or tension that eliminates the clearance between gear teeth. It ensures immediate contact and engagement of the gear teeth, minimizing the dead zone and improving the overall responsiveness and accuracy of the gear motor.
- Anti-Backlash Gears: Anti-backlash gears are designed specifically to minimize or eliminate backlash. They typically feature modifications to the gear tooth profile, such as modified tooth shapes or special tooth arrangements, to reduce clearance. Anti-backlash gears can be used in gear motor designs to improve precision and minimize the effects of backlash.
- Backlash Compensation: In some cases, backlash compensation techniques can be employed. These techniques involve monitoring the position or movement of the load and applying control algorithms to compensate for the backlash. By accounting for the clearance and adjusting the control signals accordingly, the effects of backlash can be mitigated, improving accuracy and responsiveness.
3. Application-Specific Considerations:
The management of backlash in gear motors should be tailored to the specific application requirements:
- Positioning Accuracy: Applications that require precise positioning, such as robotics or CNC machines, may require tighter backlash control to ensure accurate and repeatable movements.
- Dynamic Response: Applications that involve rapid changes in direction or speed, such as high-speed automation or servo control systems, may require reduced backlash to maintain responsiveness and minimize overshoot or lag.
- Load Characteristics: The nature of the load and its impact on the gear system should be considered. Heavy loads or applications with significant inertial forces may require additional backlash management techniques to maintain stability and accuracy.
In summary, backlash in gear motors can affect precision, accuracy, and responsiveness. While it can compensate for misalignments, backlash may introduce delays and reduce the overall performance of the gear motor. Designers manage backlash through tight manufacturing tolerances, preload techniques, anti-backlash gears, and backlash compensation methods. The management of backlash depends on the specific application requirements, considering factors such as positioning accuracy, dynamic response, and load characteristics.
How does the gearing mechanism in a gear motor contribute to torque and speed control?
The gearing mechanism in a gear motor plays a crucial role in controlling torque and speed. By utilizing different gear ratios and configurations, the gearing mechanism allows for precise manipulation of these parameters. Here’s a detailed explanation of how the gearing mechanism contributes to torque and speed control in a gear motor:
The gearing mechanism consists of multiple gears with varying sizes, tooth configurations, and arrangements. Each gear in the system engages with another gear, creating a mechanical connection. When the motor rotates, it drives the rotation of the first gear, which then transfers the motion to subsequent gears, ultimately resulting in the output shaft’s rotation.
Torque Control:
The gearing mechanism in a gear motor enables torque control through the principle of mechanical advantage. The gear system utilizes gears with different numbers of teeth, known as gear ratio, to adjust the torque output. When a smaller gear (pinion) engages with a larger gear (gear), the pinion rotates faster than the gear but exerts more force or torque. This results in torque amplification, allowing the gear motor to deliver higher torque at the output shaft while reducing the rotational speed. Conversely, if a larger gear engages with a smaller gear, torque reduction occurs, resulting in higher rotational speed at the output shaft.
By selecting the appropriate gear ratio, the gearing mechanism effectively adjusts the torque output of the gear motor to match the requirements of the application. This torque control capability is essential in applications that demand high torque for heavy lifting or overcoming resistance, as well as applications that require lower torque but higher rotational speed.
Speed Control:
The gearing mechanism also contributes to speed control in a gear motor. The gear ratio determines the relationship between the rotational speed of the input shaft (driven by the motor) and the output shaft. When a gear motor has a higher gear ratio (more teeth on the driven gear compared to the driving gear), it reduces the output speed while increasing the torque. Conversely, a lower gear ratio increases the output speed while reducing the torque.
By choosing the appropriate gear ratio, the gearing mechanism allows for precise speed control in a gear motor. This is particularly useful in applications that require specific speed ranges or variations, such as conveyor systems, robotic movements, or machinery that needs to operate at different speeds for different tasks. The speed control capability of the gearing mechanism enables the gear motor to match the desired speed requirements of the application accurately.
In summary, the gearing mechanism in a gear motor contributes to torque and speed control by utilizing different gear ratios and configurations. It enables torque amplification or reduction, depending on the gear arrangement, allowing the gear motor to deliver the required torque output. Additionally, the gear ratio also determines the relationship between the rotational speed of the input and output shafts, providing precise speed control. These torque and speed control capabilities make gear motors versatile and suitable for a wide range of applications in various industries.
editor by CX 2024-05-02
China manufacturer Stainless Steel Micro Magnetic Drive Gear Pump Stepper Motor vacuum pump diy
Product Description
Model Description
Product Instruction:
Stepping motor is used to drive this gear pump. It can realize the open-loop control, No need to wait the feedback signal, then the angle and speed control of the stepper motor can be realized by the number and frequency of the input pulses of the driver signal input. It is suitable for short distance, high precision and frequent operation.
Attentions:
1.400 Mesh filter shall be installed at the inlet of gear pump.
2.Before using, squeeze in a small amount of medium to lubricate the gear from the gear pump inlet.
Product Size:
Product Parameters:
The values in this table are for reference only.
Product characteristics
Test Medium: Water
1.Smooth transmission, no pulse, accurate measurement;
2.Use magnetic drive structure, static seal, truly achieve zero leakage;
3.Diversified drive, wide application in the industry, complete models;
4.High efficiency and energy saving, easy maintenance, low installation cost and long service life.
Attentions:
It cannot be used to transport fluids with hard particles;
Filter to be installed at inlet.
Remarks:
OEM service are avaiable according to your request.
The specifications are only for reference, for details checking, please feel free to contact us.
Applications:
Industrial machinery and equipment | Water treatment | Food and cosmetics |
Inkjet printing/painting | Mask making | Food and Beverage filling |
Oil transportation | Booster pressure | Filling of perfume cosmetics |
Sand mill/Grinding | Circulating cooling | Quantitative Transport |
Logistics:
Company Profile
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 12 Months |
---|---|
Warranty: | 12 Months |
Mesh Form: | External Engaged |
Tooth Flank: | Straight Tooth |
Tooth Curve: | Involute |
Power: | Magnetic Drive by Stepper Motor |
Customization: |
Available
|
|
---|
Where can individuals find reputable suppliers or manufacturers of micro gear motors?
Individuals looking for reputable suppliers or manufacturers of micro gear motors can consider the following reliable sources:
- Online Directories: Online directories, such as Thomasnet, Alibaba, or GlobalSpec, provide comprehensive listings of suppliers and manufacturers across various industries. These directories often include detailed profiles, product catalogs, and customer reviews, making it easier to evaluate and connect with reputable micro gear motor suppliers.
- Trade Shows and Exhibitions: Attending industry-specific trade shows and exhibitions offers an excellent opportunity to meet and connect with reputable micro gear motor manufacturers and suppliers. These events gather industry professionals, showcase the latest technologies, and provide a platform for networking and establishing business relationships.
- Industry Associations: Industry associations, such as the Robotics Industries Association (RIA) or the National Electrical Manufacturers Association (NEMA), can provide valuable resources and directories of reputable micro gear motor manufacturers and suppliers. These associations often have strict membership criteria, ensuring that listed companies adhere to industry standards and best practices.
- Referrals and Recommendations: Seek referrals or recommendations from colleagues, industry experts, or professionals who have experience working with micro gear motors. Their firsthand experiences can provide insights into reputable manufacturers or suppliers known for their quality products, reliable services, and customer support.
- Online Research and Reviews: Conducting online research allows individuals to explore various manufacturers or suppliers of micro gear motors. Look for websites, online forums, or discussion boards that provide reviews, ratings, or testimonials from customers. Reading unbiased experiences and feedback can help identify reputable companies that consistently deliver high-quality products and excellent customer service.
- Consulting with Industry Experts: Seek advice from industry experts, engineers, or consultants who specialize in micro gear motors. They often have extensive knowledge of the market, industry trends, and reputable manufacturers or suppliers. Consulting with experts can provide valuable insights and guidance in selecting the right supplier for specific requirements.
It is important to conduct due diligence when evaluating suppliers or manufacturers. Consider factors such as their reputation, years of experience in the industry, product quality, certifications, customer support, and delivery capabilities. Request samples, specifications, or references to assess their suitability for the intended application.
By utilizing these sources and conducting thorough research, individuals can find reputable suppliers or manufacturers of micro gear motors that meet their specific needs and ensure reliable and high-quality products.
How does the control system of micro gear motors contribute to precision in small-scale applications?
The control system of micro gear motors plays a crucial role in achieving precision in small-scale applications. Here’s how it contributes to precision:
- Speed Control: The control system allows precise regulation of the motor’s speed, enabling accurate and consistent movement in small-scale applications. By adjusting the voltage or current supplied to the motor, the control system can control the rotational speed of the motor shaft, ensuring precise motion according to the application’s requirements.
- Position Control: Micro gear motors with advanced control systems, such as stepper motors, offer precise position control. The control system sends specific signals or pulses to the motor, causing it to move in discrete steps or increments. This allows for accurate positioning in small-scale applications where precise movements and alignment are critical. The control system can also maintain the motor’s position without the need for external feedback devices, enhancing precision and simplifying the overall system.
- Torque Control: In some applications, maintaining consistent torque is essential for precision. The control system of micro gear motors can regulate the torque output, ensuring that the motor delivers the required amount of force accurately and consistently. This is particularly important in tasks that involve delicate or precise movements, such as robotics, where excessive torque can cause damage or imprecise results.
- Feedback Mechanisms: Many micro gear motors incorporate feedback mechanisms into their control systems. These mechanisms provide information about the motor’s performance, such as speed, position, or current, and allow the control system to make adjustments in real-time. Feedback mechanisms, such as encoders or sensors, enable closed-loop control, where the control system continuously monitors and adjusts the motor’s operation to maintain precision and accuracy.
- Control Algorithms: The control system of micro gear motors often incorporates sophisticated control algorithms that optimize performance and precision. These algorithms can include proportional-integral-derivative (PID) controllers, adaptive control, or advanced motion control algorithms. By analyzing the input signals, sensory feedback, and desired output, these algorithms can adjust the motor’s operation to minimize errors, disturbances, or deviations from the desired motion, thus enhancing precision in small-scale applications.
By integrating precise speed control, position control, torque control, feedback mechanisms, and advanced control algorithms, the control system of micro gear motors enables precise and accurate operation in small-scale applications. This precision is crucial for tasks that require fine movements, tight tolerances, or intricate positioning, such as robotics, automation, medical devices, and miniature mechanisms.
How does the gear ratio in micro gear motors impact their torque and speed characteristics?
The gear ratio in micro gear motors plays a crucial role in determining their torque and speed characteristics. Here’s a detailed explanation of how the gear ratio affects these attributes:
1. Torque:
The gear ratio directly influences the torque output of a micro gear motor. A higher gear ratio corresponds to a higher torque output, while a lower gear ratio results in lower torque output. The gear mechanism in micro gear motors provides torque multiplication, allowing the motor to generate higher torque than its inherent capability. This is beneficial in applications that require higher force or torque, such as moving heavy loads or overcoming resistance. By choosing an appropriate gear ratio, micro gear motors can deliver the required torque for specific tasks while maintaining a compact size.
2. Speed:
Conversely, the gear ratio inversely affects the speed of a micro gear motor. A higher gear ratio leads to a lower output speed, while a lower gear ratio results in a higher output speed. This is because the gear reduction mechanism slows down the rotational speed of the motor output shaft. Micro gear motors with high gear ratios are commonly used in applications that require precise and slow movement, such as robotics or positioning systems. On the other hand, micro gear motors with lower gear ratios are suitable for applications that demand higher rotational speeds, such as in fan or blower systems.
3. Trade-off:
It’s important to note that there is a trade-off between torque and speed in micro gear motors. As the gear ratio increases to provide higher torque, the output speed decreases. Conversely, if the gear ratio is decreased to increase the speed, the torque output decreases. This trade-off is a result of the mechanical advantage provided by the gear system. Designers must carefully consider the requirements of the specific application to determine the optimal gear ratio that balances torque and speed according to the desired performance.
4. Efficiency:
The gear ratio also influences the overall efficiency of the micro gear motor. While gears provide torque multiplication, they can introduce mechanical losses due to friction and backlash. Higher gear ratios generally result in lower efficiency due to increased friction losses. It’s important to select gear systems with high-quality materials, precise manufacturing, and proper lubrication to minimize these losses and maximize the overall efficiency of the micro gear motor.
5. Backlash:
Backlash refers to the slight play or movement between the teeth of gears. It is a common characteristic in gear systems and can impact the precision and responsiveness of the micro gear motor. The gear ratio can affect the amount of backlash present in the system. Higher gear ratios may exhibit more backlash, which can introduce inaccuracies in motion control applications. Design considerations should be made to minimize backlash, such as using gears with tighter tolerances or incorporating anti-backlash mechanisms.
In summary, the gear ratio in micro gear motors has a direct impact on their torque and speed characteristics. Higher gear ratios provide increased torque output but lower speed, while lower gear ratios result in higher speed but lower torque. Designers must carefully select the appropriate gear ratio to meet the specific requirements of the application, considering factors such as desired torque, speed, efficiency, and backlash.
editor by CX 2024-04-24
China Custom 2 Phase NEMA 8 Gear Reducer Stepper Motor a/c vacuum pump
Product Description
A. Specification of 2 Phase NEMA 8 Gear Reducer Stepper Motor:
1. Phase: 2
2. Step Angle: 1.8 degree
3. Lead Wire: 4/6
4. Motor Length: 28-30MM
5. Reduction Ratio: 1:4 – 1:107
6. Max. Permissible Torque: 5-9Kg.cm
7. Shaft: Customized like D-cut, round or with hole
Note: The data sheet is only for reference, We can make the motor according to your requirement after Evaluation
B. Company Capacity
HangZhou CHINAMFG Motor Co. Ltd is a manufacturer and exporter of various of motors with over 10 years experience.
Our product ranges include:
1) DC Brush motor: 6-130mm diameter, 0.01-1000W output power
2) DC Spur Gear Motor: 12-110mm diameter, 0.1-300W output power
3) DC Planeary Gear Motor: 10-82mm diameter, 0.1-100W output power
4) Brushless DC Motor: 28-110mm, 5-1500W output power
5) Stepper Motor: NEMA 08 to NEMA 43, Can with gearbox and lead screw
6) Servo Motor: 42mm to 130mm diameter, 50-4000w
7) AC Gear Motor: 49 to 100mm diameter, 6-140 output power
1. Production Line:
2. Testing Equipment:
3. Certificates:
4. Customer Visits:
6. FAQ:
Q: What’s your main products?
A:We currently produce Brushed Dc Motors, Brushed Dc gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors and Ac Motors etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.
Q:How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed life time and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.
Q: Do you have customized service for your standard motors?
A:Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.
Q:Do you have individual design service for motors?
A:Yes, we would like to design motors individually for our customers, but it may need some mould charge and design charge.
Q:Can I have samples for testing first?
A:Yes, definitely you can. After confirmed the needed motor specs, we will quote and provide a proforma invoice for samples, once we get the payment, we will get a PASS from our account department to proceed samples accordingly.
Q:How do you make sure motor quality?
A:We have our own inspection procedures: for incoming materials, we have signed sample and drawing to make sure qualified incoming materials; for production process, we have tour inspection in the process and final inspection to make sure qualified products before shipping.
Q:What’s your lead time?
A:Generally speaking, our regular standard product will need 25-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depends on the specific orders
Q:What’s your payment term?
A:For all our new customers, we will need 40% deposite, 60% paid before shipment.
Q:When will you reply after got my inquiries?
A:We will response within 24 hours once get your inquires.
Q:How can I trust you to make sure my money is safe?
A:We are certified by the third party SGS and we have exported to over 85 countries up to June.2017. You can check our reputation with our current customers in your country (if our customers do not mind), or you can order via alibaba to get trade assurance from alibaba to make sure your money is safe.
Q:What’s the minimum order quantity?
A:Our minimum order quantity depends on different motor models, please email us to check. Also, we usually do not accept personal use motor orders.
Q:What’s your shipping method for motors?
A:For samples and packages less than 100kg, we usually suggest express shipping; For heavy packages, we usually suggest air shipping or sea shipping. But it all depends on our customers’ needs.
Q:What certifications do you have?
A:We currently have CE and ROSH certifications.
Q:Can you send me your price list?
A:Since we have hundreds of different products, and price varies per different specifications, we are not able to offer a price list. But we can quote within 24 hours once got your inquirues to make sure you can get the price in time.
Q:Can I visit your company?
A:Yes, welcome to visit our company, but please let us know at least 2 weeks in advance to help us make sure no other meetings during the day you visit us. Thanks!
Weclome contact with us if have any questions about this motor or other products! /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Universal, Household Appliances, Power Tools, Others |
---|---|
Operating Speed: | Adjust Speed |
Function: | Driving |
Casing Protection: | Closed Type |
Structure and Working Principle: | Others |
Type: | Hybrid Stepper Motor |
Samples: |
US$ 45/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Where can individuals find reliable resources for learning more about gear motors and their applications?
Individuals seeking to learn more about gear motors and their applications have access to various reliable resources that provide valuable information and insights. Here are some sources where individuals can find reliable information about gear motors:
1. Manufacturer Websites:
Manufacturer websites are a primary source of information about gear motors. Gear motor manufacturers often provide detailed product specifications, application guides, technical documentation, and educational materials on their websites. These resources offer insights into different gear motor types, features, performance characteristics, and application considerations. Manufacturer websites are a reliable and convenient starting point for learning about gear motors.
2. Industry Associations and Organizations:
Industry associations and organizations related to mechanical engineering, automation, and motion control often have resources and publications dedicated to gear motors. These organizations provide technical articles, whitepapers, industry standards, and guidelines related to gear motor design, selection, and application. Examples of such associations include the American Gear Manufacturers Association (AGMA), International Electrotechnical Commission (IEC), and Institute of Electrical and Electronics Engineers (IEEE).
3. Technical Publications and Journals:
Technical publications and journals focused on engineering, robotics, and motion control are valuable sources of in-depth knowledge about gear motors. Publications like IEEE Transactions on Industrial Electronics, Mechanical Engineering magazine, or Motion System Design magazine often feature articles, case studies, and research papers on gear motor technology, advancements, and applications. These publications provide authoritative and up-to-date information from industry experts and researchers.
4. Online Forums and Communities:
Online forums and communities dedicated to engineering, robotics, and automation can be excellent resources for discussions, insights, and practical experiences related to gear motors. Websites like Stack Exchange, engineering-focused subreddits, or specialized forums provide platforms for individuals to ask questions, share knowledge, and engage in discussions with professionals and enthusiasts in the field. Participating in these communities allows individuals to learn from real-world experiences and gain practical insights.
5. Educational Institutions and Courses:
Technical colleges, universities, and vocational training centers often offer courses or programs in mechanical engineering, mechatronics, or automation that cover gear motor fundamentals and applications. These educational institutions provide comprehensive curricula, textbooks, and lecture materials that can serve as reliable resources for individuals interested in learning about gear motors. Additionally, online learning platforms like Coursera, Udemy, or LinkedIn Learning offer courses on topics related to gear motors and motion control.
6. Trade Shows and Exhibitions:
Attending trade shows, exhibitions, and industry conferences related to automation, robotics, or motion control provides opportunities to learn about the latest advancements in gear motor technology. These events often feature product demonstrations, technical presentations, and expert panels where individuals can interact with gear motor manufacturers, industry experts, and other professionals. It’s a great way to stay updated on the latest trends, innovations, and applications of gear motors.
When seeking reliable resources, it’s important to consider the credibility of the source, the expertise of the authors, and the relevance to the specific area of interest. By leveraging these resources, individuals can gain a comprehensive understanding of gear motors and their applications, from basic principles to advanced topics, enabling them to make informed decisions and effectively utilize gear motors in their projects or applications.
Can you explain the role of backlash in gear motors and how it’s managed in design?
Backlash plays a significant role in gear motors and is an important consideration in their design and operation. Backlash refers to the slight clearance or play between the teeth of gears in a gear system. It affects the precision, accuracy, and responsiveness of the gear motor. Here’s an explanation of the role of backlash in gear motors and how it is managed in design:
1. Role of Backlash:
Backlash in gear motors can have both positive and negative effects:
- Compensation for Misalignment: Backlash can help compensate for minor misalignments between gears, shafts, or the load. It allows a small amount of movement before engaging the next set of teeth, reducing the risk of damage due to misalignment. This can be particularly beneficial in applications where precise alignment is challenging or subject to variations.
- Negative Impact on Accuracy and Responsiveness: Backlash can introduce a delay or “dead zone” in the motion transmission. When changing the direction of rotation or reversing the load, the gear teeth must first overcome the clearance or play before engaging in the opposite direction. This delay can reduce the overall accuracy, responsiveness, and repeatability of the gear motor, especially in applications that require precise positioning or rapid changes in direction or speed.
2. Managing Backlash in Design:
Designers employ various techniques to manage and minimize backlash in gear motors:
- Tight Manufacturing Tolerances: Proper manufacturing techniques and tight tolerances can help minimize backlash. Precision machining and quality control during the production of gears and gear components ensure closer tolerances, reducing the amount of play between gear teeth.
- Preload or Pre-tensioning: Applying a preload or pre-tensioning force to the gear system can help reduce backlash. This technique involves introducing an initial force or tension that eliminates the clearance between gear teeth. It ensures immediate contact and engagement of the gear teeth, minimizing the dead zone and improving the overall responsiveness and accuracy of the gear motor.
- Anti-Backlash Gears: Anti-backlash gears are designed specifically to minimize or eliminate backlash. They typically feature modifications to the gear tooth profile, such as modified tooth shapes or special tooth arrangements, to reduce clearance. Anti-backlash gears can be used in gear motor designs to improve precision and minimize the effects of backlash.
- Backlash Compensation: In some cases, backlash compensation techniques can be employed. These techniques involve monitoring the position or movement of the load and applying control algorithms to compensate for the backlash. By accounting for the clearance and adjusting the control signals accordingly, the effects of backlash can be mitigated, improving accuracy and responsiveness.
3. Application-Specific Considerations:
The management of backlash in gear motors should be tailored to the specific application requirements:
- Positioning Accuracy: Applications that require precise positioning, such as robotics or CNC machines, may require tighter backlash control to ensure accurate and repeatable movements.
- Dynamic Response: Applications that involve rapid changes in direction or speed, such as high-speed automation or servo control systems, may require reduced backlash to maintain responsiveness and minimize overshoot or lag.
- Load Characteristics: The nature of the load and its impact on the gear system should be considered. Heavy loads or applications with significant inertial forces may require additional backlash management techniques to maintain stability and accuracy.
In summary, backlash in gear motors can affect precision, accuracy, and responsiveness. While it can compensate for misalignments, backlash may introduce delays and reduce the overall performance of the gear motor. Designers manage backlash through tight manufacturing tolerances, preload techniques, anti-backlash gears, and backlash compensation methods. The management of backlash depends on the specific application requirements, considering factors such as positioning accuracy, dynamic response, and load characteristics.
What is a gear motor, and how does it combine the functions of gears and a motor?
A gear motor is a type of motor that incorporates gears into its design to combine the functions of gears and a motor. It consists of a motor, which provides the mechanical power, and a set of gears, which transmit and modify this power to achieve specific output characteristics. Here’s a detailed explanation of what a gear motor is and how it combines the functions of gears and a motor:
A gear motor typically consists of two main components: the motor and the gear system. The motor is responsible for converting electrical energy into mechanical energy, generating rotational motion. The gear system, on the other hand, consists of multiple gears with different sizes and tooth configurations. These gears are meshed together in a specific arrangement to transmit and modify the output torque and speed of the motor.
The gears in a gear motor serve several functions:
1. Torque Amplification:
One of the primary functions of the gear system in a gear motor is to amplify the torque output of the motor. By using gears with different sizes, the input torque can be effectively multiplied or reduced. This allows the gear motor to provide higher torque at lower speeds or lower torque at higher speeds, depending on the gear arrangement. This torque amplification is beneficial in applications where high torque is required, such as in heavy machinery or vehicles.
2. Speed Reduction or Increase:
The gear system in a gear motor can also be used to reduce or increase the rotational speed of the motor output. By utilizing gears with different numbers of teeth, the gear ratio can be adjusted to achieve the desired speed output. For example, a gear motor with a higher gear ratio will output lower speed but higher torque, whereas a gear motor with a lower gear ratio will output higher speed but lower torque. This speed control capability allows for precise matching of motor output to the requirements of specific applications.
3. Directional Control:
Gears in a gear motor can be used to control the direction of rotation of the motor output shaft. By employing different combinations of gears, such as spur gears, bevel gears, or worm gears, the rotational direction can be changed. This directional control is crucial in applications where bidirectional movement is required, such as in conveyor systems or robotic arms.
4. Load Distribution:
The gear system in a gear motor helps distribute the load evenly across multiple gears, which reduces the stress on individual gears and increases the overall durability and lifespan of the motor. By sharing the load among multiple gears, the gear motor can handle higher torque applications without putting excessive strain on any particular gear. This load distribution capability is especially important in heavy-duty applications that require continuous operation under demanding conditions.
By combining the functions of gears and a motor, gear motors offer several advantages. They provide torque amplification, speed control, directional control, and load distribution capabilities, making them suitable for various applications that require precise and controlled mechanical power. Gear motors are commonly used in industries such as robotics, automotive, manufacturing, and automation, where reliable and efficient power transmission is essential.
editor by CX 2024-04-04
China Hot selling 12V 24V NEMA 8 11 17 23 24 34 42 52 Mini Micro Ball Screw Linear Geared Closed Loop Stepper Step Stepping Motor Motors with Planetary Gearbox / Brake / Encoder vacuum pump adapter
Product Description
12V 24V NEMA 8 Mini Micro Ball Screw Linear Geared Closed Loop Stepper Step Stepping Motor Motors with Planetary Gearbox / Brake / Encoder
Stepper Motor Overview:
Motor series | Phase No. | Step angle | Motor length | Motor size | Leads No. | Holding torque |
Nema 8 | 2 phase | 1.8 degree | 30~42mm | 20x20mm | 4 | 180~300g.cm |
Nema 11 | 2 phase | 1.8 degree | 32~51mm | 28x28mm | 4 or 6 | 430~1200g.cm |
Nema 14 | 2 phase | 0.9 or 1.8 degree | 27~42mm | 35x35mm | 4 | 1000~2000g.cm |
Nema 16 | 2 phase | 1.8 degree | 20~44mm | 39x39mm | 4 or 6 | 650~2800g.cm |
Nema 17 | 2 phase | 0.9 or 1.8 degree | 25~60mm | 42x42mm | 4 or 6 | 1.5~7.3kg.cm |
Nema 23 | 2 phase | 0.9 or 1.8 degree | 41~112mm | 57x57mm | 4 or 6 or 8 | 0.39~3.1N.m |
3 phase | 1.2 degree | 42~79mm | 57x57mm | – | 0.45~1.5N.m | |
Nema 24 | 2 phase | 1.8 degree | 56~111mm | 60x60mm | 8 | 1.17~4.5N.m |
Nema 34 | 2 phase | 1.8 degree | 67~155mm | 86x86mm | 4 or 8 | 3.4~12.2N.m |
3 phase | 1.2 degree | 65~150mm | 86x86mm | – | 2~7N.m | |
Nema 42 | 2 phase | 1.8 degree | 99~201mm | 110x110mm | 4 | 11.2~28N.m |
3 phase | 1.2 degree | 134~285mm | 110x110mm | – | 8~25N.m | |
Nema 52 | 2 phase | 1.8 degree | 173~285mm | 130x130mm | 4 | 13.3~22.5N.m |
3 phase | 1.2 degree | 173~285mm | 130x130mm | – | 13.3~22.5N.m | |
Above only for representative products, products of special request can be made according to the customer request. |
1. The magnetic steel is high grade,we usually use the SH level type.
2. The rotor is be coated,reduce burrs,working smoothly,less noise. We test the stepper motor parts step by step.
3. Stator is be test and rotor is be test before assemble.
4. After we assemble the stepper motor, we will do 1 more test for it, to make sure the quality is good.
JKONGMOTOR stepping motor is a motor that converts electrical pulse signals into corresponding angular displacements or linear displacements. This small stepper motor can be widely used in various fields, such as a 3D printer, stage lighting, laser engraving, textile machinery, medical equipment, automation equipment, etc.
Jkongmotor Nema 8 Stepper Motor Parameters:
Model No. | Step Angle | Motor Length | Current | Resistance | Inductance | Holding Torque | # of Leads | Mass |
( °) | (L)mm | A | Ω | mH | g.cm | No. | kg | |
JK20HS30-0604 | 1.8 | 30 | 0.6 | 18 | 3.2 | 180 | 4 | 0.06 |
JK20HS33-0604 | 1.8 | 33 | 0.6 | 6.5 | 1.7 | 200 | 4 | 0.07 |
JK20HS38-0604 | 1.8 | 38 | 0.6 | 10 | 5.5 | 300 | 4 | 0.08 |
JK20HS42-0804 | 1.8 | 42 | 0.8 | 5.4 | 1.5 | 400 | 4 | 0.09 |
Jkongmotor Nema 11 Stepper Motor Parameters:
Model No. | Step Angle | Motor Length | Current | Resistance | Inductance | Holding Torque | # of Leads | Rotor Inertia | Mass |
( °) | (L)mm | A | Ω | mH | g.cm | No. | g.cm2 | Kg | |
JK28HS32-0674 | 1.8 | 32 | 0.67 | 5.6 | 3.4 | 600 | 4 | 9 | 0.11 |
JK28HS32-0956 | 1.8 | 32 | 0.95 | 2.8 | 0.8 | 430 | 6 | 9 | 0.11 |
JK28HS45-0956 | 1.8 | 45 | 0.95 | 3.4 | 1.2 | 750 | 6 | 12 | 0.14 |
JK28HS45-0674 | 1.8 | 45 | 0.67 | 6.8 | 4.9 | 950 | 4 | 12 | 0.14 |
JK28HS51-0956 | 1.8 | 51 | 0.95 | 4.6 | 1.8 | 900 | 6 | 18 | 0.2 |
JK28HS51-0674 | 1.8 | 51 | 0.67 | 9.2 | 7.2 | 1200 | 4 | 18 | 0.2 |
Jkongmotor Nema 14 Stepper Motor Parameters:
Model No. | Step Angle | Motor Length | Current | Resistance | Inductance | Holding Torque | # of Leads | Detent Torque | Rotor Inertia | Mass |
( °) | (L)mm | A | Ω | mH | g.cm | No. | g.cm | g.cm2 | Kg | |
JK35HS28-0504 | 1.8 | 28 | 0.5 | 20 | 14 | 1000 | 4 | 80 | 11 | 0.13 |
JK35HS34-1004 | 1.8 | 34 | 1 | 2.7 | 4.3 | 1400 | 4 | 100 | 13 | 0.17 |
JK35HS42-1004 | 1.8 | 42 | 1 | 3.8 | 3.5 | 2000 | 4 | 125 | 23 | 0.22 |
Jkongmotor 39mm Hybrid Stepping Motor Parameters:
Model No. | Step Angle | Motor Length | Current | Resistance | Inductance | Holding Torque | # of Leads | Detent Torque | Rotor Inertia | Mass |
( °) | (L)mm | A | Ω | mH | g.cm | No. | g.cm | g.cm2 | Kg | |
JK39HY20-0404 | 1.8 | 20 | 0.4 | 6.6 | 7.5 | 650 | 4 | 50 | 11 | 0.12 |
JK39HY20-0506 | 1.8 | 20 | 0.5 | 13 | 7.5 | 800 | 6 | 50 | 11 | 0.12 |
JK39HY34-0404 | 1.8 | 34 | 0.4 | 30 | 32 | 2100 | 4 | 120 | 20 | 0.18 |
JK39HY34-0306 | 1.8 | 34 | 0.3 | 40 | 20 | 1300 | 6 | 120 | 20 | 0.18 |
JK39HY38-0504 | 1.8 | 38 | 0.5 | 24 | 45 | 2900 | 4 | 180 | 24 | 0.2 |
JK39HY38-0806 | 1.8 | 38 | 0.8 | 7.5 | 6 | 2000 | 6 | 180 | 24 | 0.2 |
JK39HY44-0304 | 1.8 | 44 | 0.3 | 40 | 100 | 2800 | 4 | 250 | 40 | 0.25 |
Jkongmotor 42BYGH Nema 17 Step Motor Parameters:
Model No. | Step Angle | Motor Length | Current | Resistance | Inductance | Holding Torque | # of Leads | Detent Torque | Rotor Inertia | Mass |
( °) | (L)mm | A | Ω | mH | kg.cm | No. | g.cm | g.cm2 | Kg | |
JK42HS25-0404 | 1.8 | 25 | 0.4 | 24 | 36 | 1.8 | 4 | 75 | 20 | 0.15 |
JK42HS28-0504 | 1.8 | 28 | 0.5 | 20 | 21 | 1.5 | 4 | 85 | 24 | 0.22 |
JK42HS34-1334 | 1.8 | 34 | 1.33 | 2.1 | 2.5 | 2.2 | 4 | 120 | 34 | 0.22 |
JK42HS34-0406 | 1.8 | 34 | 0.4 | 24 | 15 | 1.6 | 6 | 120 | 34 | 0.22 |
JK42HS34-0956 | 1.8 | 34 | 0.95 | 4.2 | 2.5 | 1.6 | 6 | 120 | 34 | 0.22 |
JK42HS40-0406 | 1.8 | 40 | 0.4 | 30 | 30 | 2.6 | 6 | 150 | 54 | 0.28 |
JK42HS40-1684 | 1.8 | 40 | 1.68 | 1.65 | 3.2 | 3.6 | 4 | 150 | 54 | 0.28 |
JK42HS40-1206 | 1.8 | 40 | 1.2 | 3 | 2.7 | 2.9 | 6 | 150 | 54 | 0.28 |
JK42HS48-0406 | 1.8 | 48 | 0.4 | 30 | 25 | 3.1 | 6 | 260 | 68 | 0.35 |
JK42HS48-1684 | 1.8 | 48 | 1.68 | 1.65 | 2.8 | 4.4 | 4 | 260 | 68 | 0.35 |
JK42HS48-1206 | 1.8 | 48 | 1.2 | 3.3 | 2.8 | 3.17 | 6 | 260 | 68 | 0.35 |
JK42HS60-0406 | 1.8 | 60 | 0.4 | 30 | 39 | 6.5 | 6 | 280 | 102 | 0.5 |
JK42HS60-1704 | 1.8 | 60 | 1.7 | 3 | 6.2 | 7.3 | 4 | 280 | 102 | 0.5 |
JK42HS60-1206 | 1.8 | 60 | 1.2 | 6 | 7 | 5.6 | 6 | 280 | 102 | 0.5 |
Jkongmotor Nema 23 Stepper Motor Parameters:
Model No. | Step Angle | Motor Length | Current | Resistance | Inductance | Holding Torque | # of Leads | Detent Torque | Rotor Inertia | Mass |
( °) | (L)mm | A | Ω | mH | N.m | No. | g.cm | g.cm2 | Kg | |
JK57HS41-1006 | 1.8 | 41 | 1 | 7.1 | 8 | 0.48 | 6 | 250 | 150 | 0.47 |
JK57HS41-2008 | 1.8 | 41 | 2 | 1.4 | 1.4 | 0.39 | 8 | 250 | 150 | 0.47 |
JK57HS41-2804 | 1.8 | 41 | 2.8 | 0.7 | 1.4 | 0.55 | 4 | 250 | 150 | 0.47 |
JK57HS51-1006 | 1.8 | 51 | 1 | 6.6 | 8.2 | 0.72 | 6 | 300 | 230 | 0.59 |
JK57HS51-2008 | 1.8 | 51 | 2 | 1.8 | 2.7 | 0.9 | 8 | 300 | 230 | 0.59 |
JK57HS51-2804 | 1.8 | 51 | 2.8 | 0.83 | 2.2 | 1.01 | 4 | 300 | 230 | 0.59 |
JK57HS56-2006 | 1.8 | 56 | 2 | 1.8 | 2.5 | 0.9 | 6 | 350 | 280 | 0.68 |
JK57HS56-2108 | 1.8 | 56 | 2.1 | 1.8 | 2.5 | 1 | 8 | 350 | 280 | 0.68 |
JK57HS56-2804 | 1.8 | 56 | 2.8 | 0.9 | 2.5 | 1.2 | 4 | 350 | 280 | 0.68 |
JK57HS64-2804 | 1.8 | 64 | 2.8 | 0.8 | 2.3 | 1 | 4 | 400 | 300 | 0.75 |
JK57HS76-2804 | 1.8 | 76 | 2.8 | 1.1 | 3.6 | 1.89 | 4 | 600 | 440 | 1.1 |
JK57HS76-3006 | 1.8 | 76 | 3 | 1 | 1.6 | 1.35 | 6 | 600 | 440 | 1.1 |
JK57HS76-3008 | 1.8 | 76 | 3 | 1 | 1.8 | 1.5 | 8 | 600 | 440 | 1.1 |
JK57HS82-3004 | 1.8 | 82 | 3 | 1.2 | 4 | 2.1 | 4 | 1000 | 600 | 1.2 |
JK57HS82-4008 | 1.8 | 82 | 4 | 0.8 | 1.8 | 2 | 8 | 1000 | 600 | 1.2 |
JK57HS82-4204 | 1.8 | 82 | 4.2 | 0.7 | 2.5 | 2.2 | 4 | 1000 | 600 | 1.2 |
JK57HS100-4204 | 1.8 | 100 | 4.2 | 0.75 | 3 | 3 | 4 | 1100 | 700 | 1.3 |
JK57HS112-3004 | 1.8 | 112 | 3 | 1.6 | 7.5 | 3 | 4 | 1200 | 800 | 1.4 |
JK57HS112-4204 | 1.8 | 112 | 4.2 | 0.9 | 3.8 | 3.1 | 4 | 1200 | 800 | 1.4 |
Jkongmotor Nema 24 Stepper Motor Parameters:
Model No. | Wiring Diagram | Motor Length | Current | Resistance | Inductance | Holding Torque | # of Leads | Detent Torque | Rotor Inertia | Mass |
(L)mm | A | Ω | mH | N.m | No. | g.cm | g.cm2 | Kg | ||
JK60HS56-2008 | Unipolar | 56 | 2 | 1.8 | 3 | 1.17 | 8 | 700 | 300 | 0.77 |
Parallel | 2.8 | 0.9 | 3.6 | 1.65 | ||||||
Tandem | 1.4 | 3.6 | 14.4 | 1.65 | ||||||
JK60HS67-2008 | Unipolar | 67 | 2 | 2.4 | 4.6 | 1.5 | 8 | 900 | 570 | 1.2 |
Parallel | 2.8 | 1.2 | 4.6 | 2.1 | ||||||
Tandem | 1.4 | 4.8 | 18.4 | 2.1 | ||||||
JK60HS88-2008 | Unipolar | 88 | 2 | 3 | 6.8 | 2.2 | 8 | 1000 | 840 | 1.4 |
Parallel | 2.8 | 1.5 | 6.8 | 3.1 | ||||||
Tandem | 1.4 | 6 | 27.2 | 3.1 | ||||||
JK60HS100-2008 | Unipolar | 100 | 2 | 3.2 | 6.4 | 2.8 | 8 | 1100 | 980 | 1.7 |
Parallel | 2.8 | 1.6 | 6.4 | 4 | ||||||
Tandem | 1.4 | 6.4 | 25.6 | 4 | ||||||
JK60HS111-2008 | Unipolar | 111 | 2 | 4.4 | 8.3 | 3.2 | 8 | 1200 | 1120 | 1.9 |
Parallel | 2.8 | 2.2 | 8.3 | 4.5 | ||||||
Tandem | 1.4 | 8.8 | 33.2 | 4.5 |
Jkongmotor Nema 34 86BYGH Stepper Motor Parameters:
Model No. | Step Angle | Motor Length | Current | Resistance | Inductance | Holding Torque | # of Leads | Detent Torque | Rotor Inertia | Mass |
( °) | (L)mm | A | Ω | mH | N.m | No. | Kg.cm | g.cm2 | Kg | |
JK86HS68-5904 | 1.8 | 67 | 5.9 | 0.28 | 1.7 | 3.4 | 4 | 0.8 | 1000 | 1.7 |
JK86HS68-2808 | 1.8 | 67 | 2.8 | 1.4 | 3.9 | 3.4 | 8 | 0.8 | 1000 | 1.7 |
JK86HS78-5504 | 1.8 | 78 | 5.5 | 0.46 | 4 | 4.6 | 4 | 1.2 | 1400 | 2.3 |
JK86HS78-4208 | 1.8 | 78 | 4.2 | 0.75 | 3.4 | 4.6 | 8 | 1.2 | 1400 | 2.3 |
JK86HS97-4504 | 1.8 | 97 | 4.5 | 0.66 | 3 | 5.8 | 4 | 1.7 | 2100 | 3 |
JK86HS97-4008 | 1.8 | 97 | 4 | 0.98 | 4.1 | 4.7 | 8 | 1.7 | 2100 | 3 |
JK86HS100-6004 | 1.8 | 100 | 6 | 0.36 | 2.8 | 7 | 4 | 1.9 | 2200 | 3.1 |
JK86HS115-6004 | 1.8 | 115 | 6 | 0.6 | 6.5 | 8.7 | 4 | 2.4 | 2700 | 3.8 |
JK86HS115-4208 | 1.8 | 115 | 4.2 | 0.9 | 6 | 8.7 | 8 | 2.4 | 2700 | 3.8 |
JK86HS126-6004 | 1.8 | 126 | 6 | 0.58 | 6.5 | 6.3 | 4 | 2.9 | 3200 | 4.5 |
JK86HS155-6004 | 1.8 | 155 | 6 | 0.68 | 9 | 13 | 4 | 3.6 | 4000 | 5.4 |
JK86HS155-4208 | 1.8 | 155 | 4.2 | 1.25 | 8 | 12.2 | 8 | 3.6 | 4000 | 5.4 |
Jkongmotor Nema 42 Stepper Motor Parameters:
Model | Step Angle | Motor Length | Current | Resistance | Inductance | Holding Torque | # of Leads | Detent Torque | Rotor Inertia | Mass |
( °) | (L)mm | A | Ω | mH | N.m | No. | kg.cm | g.cm2 | Kg | |
JK110HS99-5504 | 1.8 | 99 | 5.5 | 0.9 | 12 | 11.2 | 4 | 3 | 5500 | 5 |
JK110HS115-6004 | 1.8 | 115 | 6 | 0.48 | 7 | 12 | 4 | 4 | 7100 | 6 |
JK110HS150-6504 | 1.8 | 150 | 6.5 | 0.8 | 15 | 21 | 4 | 5.9 | 10900 | 8.4 |
JK110HS165-6004 | 1.8 | 165 | 6 | 0.9 | 14 | 24 | 4 | 6.6 | 12800 | 9.1 |
JK110HS201-8004 | 1.8 | 201 | 8 | 0.67 | 12 | 28 | 4 | 7.5 | 16200 | 11.8 |
Jkongmotor Nema 52 Stepper Motor Parameters:
Model No. | Operating Voltage | Rated Current | Resistance | Inductance | Holding Torque | Noload Frequency | Starting Frequency | Mass | Motor Length |
VDC | A | Ω | mH | N.m | No. | g.cm | Kg | mm | |
JK130HS173-6004 | 80~325 | 6 | 0.75 | 12.6 | 25 | 25000 | 2300 | 13.3 | 173 |
JK130HS229-6004 | 80~325 | 6 | 0.83 | 13.2 | 30 | 25000 | 2300 | 18 | 229 |
JK130HS257-7004 | 80~325 | 7 | 0.73 | 11.7 | 40 | 23000 | 2200 | 19 | 257 |
JK130HS285-7004 | 80~325 | 7 | 0.66 | 10 | 50 | 23000 | 2200 | 22.5 | 285 |
Stepping Motor Customized
Detailed Photos
Motor with Driver Closed Loop Stepper Motor
Easy Servo Stepper Motor Kits Geared Stepper Motor Linear Actuator Stepper Motor
Linear Screw Stepper Motor 3 / 4 Axis Cnc Stepper Motor Kits Hybrid Stepper Motor
Brushless DC Motor Brushed Dc Motor Coreless Dc Motor
Company Profile
HangZhou CHINAMFG Co., Ltd was a high technology industry zone in HangZhou, china. Our products used in many kinds of machines, such as 3d printer CNC machine, medical equipment, weaving printing equipments and so on.
JKONGMOTOR warmly welcome ‘OEM’ & ‘ODM’ cooperations and other companies to establish long-term cooperation with us.
Company spirit of sincere and good reputation, won the recognition and support of the broad masses of customers, at the same time with the domestic and foreign suppliers close community of interests, the company entered the stage of stage of benign development, laying a CHINAMFG foundation for the strategic goal of realizing only really the sustainable development of the company.
Equipments Show:
Production Flow:
Package:
Certification:
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Printing Equipment |
---|---|
Speed: | Constant Speed |
Number of Stator: | Two-Phase |
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Can you recommend resources for further learning about the principles and applications of micro gear motors?
Yes, here are some recommended resources for further learning about the principles and applications of micro gear motors:
- Manufacturer Websites: Visit the websites of micro gear motor manufacturers. Many reputable manufacturers provide resources such as product datasheets, technical specifications, application notes, and white papers. These resources can offer valuable insights into the principles, design considerations, and specific applications of micro gear motors.
- Industry Publications and Journals: Subscribe to or explore industry publications and journals related to robotics, automation, or electromechanical systems. Examples include “IEEE Transactions on Robotics,” “Robotics and Automation Magazine,” or “Control Engineering.” These publications often feature articles, case studies, and research papers that delve into the principles, advancements, and real-world applications of micro gear motors.
- Books and Reference Materials: Look for books specifically dedicated to the principles and applications of micro gear motors. Some recommended titles include “Gearmotor Handbook” by Steve Antonich, “Handbook of Small Electric Motors” edited by William H. Yeadon, or “Mechatronics: Principles and Applications” by Godfrey C. Onwubolu. These resources provide comprehensive information, theories, and practical guidance on micro gear motors.
- Online Courses and Tutorials: Online learning platforms, such as Coursera, Udemy, or edX, offer courses on robotics, mechatronics, and motor control. These courses cover topics related to micro gear motors, including their principles, design, control, and applications. Completing these courses can provide in-depth knowledge and practical skills in working with micro gear motors.
- Technical Forums and Communities: Engage in technical forums and communities dedicated to robotics, motor control, or mechatronics. Websites like Stack Exchange (specifically the Robotics or Electrical Engineering sections), Reddit’s r/AskElectronics or r/robotics, or specialized forums like All About Circuits or Robotics Stack Exchange can be valuable platforms for asking questions, discussing principles, and learning from experts and enthusiasts in the field.
- Research Papers and Academic Publications: Explore academic databases such as IEEE Xplore, ScienceDirect, or Google Scholar to find research papers and academic publications related to micro gear motors. These papers provide in-depth analyses, experimental results, and theoretical discussions on various aspects of micro gear motors, including their principles, modeling, control algorithms, and emerging applications.
By utilizing these resources, individuals can gain a deeper understanding of the principles and applications of micro gear motors. It is recommended to combine multiple sources for a comprehensive and well-rounded learning experience.
What factors should be considered when selecting a micro gear motor for a particular application?
When selecting a micro gear motor for a particular application, several important factors should be taken into consideration. These factors help ensure that the chosen motor meets the specific requirements of the application and performs optimally. Here are the key factors to consider:
1. Torque Requirement:
Determine the torque requirements of the application. Consider both the maximum torque needed and the continuous torque required for sustained operation. Select a micro gear motor that can deliver the required torque output while considering factors such as load variations, start-up torque, and intermittent peak torque demands.
2. Speed Requirement:
Consider the desired speed range for the application. Determine the required output speed of the micro gear motor to ensure that it can meet the speed requirements of the specific task. It is important to select a motor with an appropriate gear ratio that can achieve the desired speed while considering the motor’s inherent speed limitations.
3. Power Supply:
Take into account the available power supply for the micro gear motor. Consider the voltage and current requirements of the motor and ensure compatibility with the available power source. Additionally, consider the power consumption and efficiency of the motor to optimize energy usage and minimize heat generation.
4. Physical Size and Mounting:
Consider the physical size and mounting requirements of the micro gear motor. Evaluate the available space for installation and ensure that the motor dimensions fit within the allotted space. Consider the mounting options, such as through-hole mounting, flange mounting, or custom mounting brackets, and choose a motor that can be easily integrated into the application.
5. Environmental Conditions:
Assess the environmental conditions in which the micro gear motor will operate. Consider factors such as temperature range, humidity, dust, vibration, and exposure to chemicals or corrosive substances. Select a motor that is designed to withstand and perform reliably under the specific environmental conditions of the application.
6. Expected Lifetime and Reliability:
Evaluate the expected lifetime and reliability requirements of the micro gear motor. Consider the duty cycle of the application, the expected operating hours, and the required maintenance intervals. Choose a motor with a reputation for reliability and durability to ensure long-term performance without frequent breakdowns or the need for premature replacements.
7. Control and Feedback:
Consider the control and feedback requirements of the micro gear motor. Determine if the application requires specific control interfaces, such as analog or digital signals, PWM control, or communication protocols like Modbus or CAN bus. Additionally, assess whether feedback mechanisms like encoders or sensors are necessary to provide accurate position or speed control.
8. Cost and Budget:
Evaluate the cost and budget constraints for the micro gear motor. Consider the overall cost of the motor, including the initial purchase price, installation costs, and any additional accessories or components required for proper operation. Balance the desired performance and features with the available budget to select a motor that provides the best value for the specific application.
9. Supplier and Support:
Consider the reputation and support provided by the micro gear motor supplier. Choose a reliable supplier with a track record of delivering quality products and excellent customer support. Ensure that the supplier offers technical assistance, documentation, and warranty coverage to address any potential issues or concerns that may arise during the motor’s lifespan.
By considering these factors, you can make an informed decision when selecting a micro gear motor for a particular application. It is essential to carefully evaluate the requirements and characteristics of the application to choose a motor that will meet performance expectations, ensure reliability, and provide optimal functionality.
How does the gear ratio in micro gear motors impact their torque and speed characteristics?
The gear ratio in micro gear motors plays a crucial role in determining their torque and speed characteristics. Here’s a detailed explanation of how the gear ratio affects these attributes:
1. Torque:
The gear ratio directly influences the torque output of a micro gear motor. A higher gear ratio corresponds to a higher torque output, while a lower gear ratio results in lower torque output. The gear mechanism in micro gear motors provides torque multiplication, allowing the motor to generate higher torque than its inherent capability. This is beneficial in applications that require higher force or torque, such as moving heavy loads or overcoming resistance. By choosing an appropriate gear ratio, micro gear motors can deliver the required torque for specific tasks while maintaining a compact size.
2. Speed:
Conversely, the gear ratio inversely affects the speed of a micro gear motor. A higher gear ratio leads to a lower output speed, while a lower gear ratio results in a higher output speed. This is because the gear reduction mechanism slows down the rotational speed of the motor output shaft. Micro gear motors with high gear ratios are commonly used in applications that require precise and slow movement, such as robotics or positioning systems. On the other hand, micro gear motors with lower gear ratios are suitable for applications that demand higher rotational speeds, such as in fan or blower systems.
3. Trade-off:
It’s important to note that there is a trade-off between torque and speed in micro gear motors. As the gear ratio increases to provide higher torque, the output speed decreases. Conversely, if the gear ratio is decreased to increase the speed, the torque output decreases. This trade-off is a result of the mechanical advantage provided by the gear system. Designers must carefully consider the requirements of the specific application to determine the optimal gear ratio that balances torque and speed according to the desired performance.
4. Efficiency:
The gear ratio also influences the overall efficiency of the micro gear motor. While gears provide torque multiplication, they can introduce mechanical losses due to friction and backlash. Higher gear ratios generally result in lower efficiency due to increased friction losses. It’s important to select gear systems with high-quality materials, precise manufacturing, and proper lubrication to minimize these losses and maximize the overall efficiency of the micro gear motor.
5. Backlash:
Backlash refers to the slight play or movement between the teeth of gears. It is a common characteristic in gear systems and can impact the precision and responsiveness of the micro gear motor. The gear ratio can affect the amount of backlash present in the system. Higher gear ratios may exhibit more backlash, which can introduce inaccuracies in motion control applications. Design considerations should be made to minimize backlash, such as using gears with tighter tolerances or incorporating anti-backlash mechanisms.
In summary, the gear ratio in micro gear motors has a direct impact on their torque and speed characteristics. Higher gear ratios provide increased torque output but lower speed, while lower gear ratios result in higher speed but lower torque. Designers must carefully select the appropriate gear ratio to meet the specific requirements of the application, considering factors such as desired torque, speed, efficiency, and backlash.
editor by CX 2024-04-04
China OEM Full Series NEMA 11 14 17 23 24 34 42 Outboard Boat Servo DC Electric Hybrid Micro Gear Stepper Motor/Step/Stepping Motor with Reducer, Encoder vacuum pump distributors
Product Description
57 Closed-loop Stepper Motor
We are a company specializing in the R&D, production and sales of brushless motors, stepper motors, DC motors. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.
Product Description
57 Closed-loop Stepper Motor:
Projects | Specifications |
Temperature Rise | under 80K |
Resistance Accuracy | ±10% |
Inductance Accuracy | ±20% |
Ambient Temperature Range | -10~ + 50°C |
Ambient Humidity Range | 20%RH – 90%RH |
Insulation Resistance | 100MΩMin.@500VDC |
Insulation Class | Class B 130° |
Step Angle Accuracy | ±5% |
Shaft Radial Play | 0.06Max.(450g-load) |
Shaft Axial Runout | 0.08Max.(450g-load) |
57 Closed-loop Stepper Motor Parameters:
Model | Current | Resistance | Inductance | Rotational Inertia | Holding torque | Body Length | Weight |
A | Ω | mH | g.cm2 | N.M | mm | kg | |
57BHS78-D0821 | 3 | 0.7 | 3.6 | 200 | 1.2 | 78 | 0.9 |
57BHS98-D0821 | 4 | 1 | 4.4 | 480 | 2 | 98 | 1.35 |
57BHS122-D0821 | 4 | 1.2 | 1.1 | 550 | 2.8 | 122 | 1.85 |
57BHS134-D0821 | 4 | 1.5 | 2.8 | 600 | 3.2 | 134 | 1.95 |
Note: The above are standard parameters. Motor can be customized, brake ready, can be equipped with reducer, encoder and other devices.
Detailed Photos
57 Closed-loop Stepper Motor Photos:
Our Service:
1). General Service:
Quick Reply |
All enquiry or email be replied in 12 hours, no delay for your business. |
Professional Team |
Questions about products will be replied professionally, exactly, best advice to you. |
Short Lead time |
Sample or small order sent in 7-15 days, bulk or customized order about 30 days. |
Payment Choice |
T/T, Western Union,, L/C, etc, easy for your business. |
Before shipment |
Take photos, send to customers for confirmation. Only confirmed, can be shipped out. |
Language Choice |
Besides English, you can use your own language by email, then we can translate it. |
2). Customization Service:
Motor specification(no-load speed , voltage, torque , diameter, noise, life, testing) and shaft length can be tailor-made according to customer’s requirements.
Other Product Parameters
20 Series screw stepper Motor 1.8°(8H series)
Model | Current | Resistance | Inductance | Rotational Inertia | Holding torque| | Body Length | Weight | ||||
A | o | mH | g.cm2 | N.M | mm | kg | |||||
20HS28-0504TS | 0.5 | 14.3 | 8.o | 1.6 | 0.018 | 28 | 0.05 | ||||
2oHs30-0504Ts | 0.5 | 11.5 | 1.7 | 1.8 | 0.02 | 30 | 0.06 | ||||
20Hs33-0604TS | 0.6 | 6.5 | 2.2 | 20 | 0.571 | 33 | 0.07 | ||||
20Hs38-0604TS | 0.6 | 10 | 5.5 | 3.2 | 0.044 | 38 | 0.08 |
28 Series screw stepper Motor 1.8°(11H series)
Model | Current | Resistance | Inductance | Rotational Inertia | Holding torque| | Body Length | Weight | ||||
A | o | mH | g.cm2 | N.M | mm | kg | |||||
28HS32-0704Ts | 0.7 | 5.6 | 3.4 | 9 | o.09 | 32 | 0.11 | ||||
28HS40-1004TS | 1.o | 4.1 | 3.1 | 11 | 0.13 | 40 | 0.13 | ||||
28HS45-1004TS | 1 | 3.8 | 3.3 | 12 | 0.15 | 45 | 0.14 | ||||
28HS51-1004Ts | 1 | 4.3 | 3.9 | 18 | 0.18 | 51 | 0.2 |
42HS Series step motor/stepping motor/stepper motor 1.8°(17H Series )
Model | Current | Resistance | Inductance | Rotational Inertia | Holding torque | Body Length | Weight | ||
A | o | mH | g.cm2 | N.M | mm | kg | |||
42HS34-1504 | 1.5 | 2.1 | 4.2 | 35 | 0.25 | 34 | 0.22 | ||
42HS40-1704 | 1.7 | 1.65 | 4.o | 54 | 0.45 | 40 | 0.28 | ||
42HS48-1704 | 1.7 | 1.65 | 4.1 | 68 | 0.55 | 48 | 0.35 | ||
42HS60-1704 | 1.7 | 3 | 6 | 80 | 0.7 | 60 | 0.48 |
42 Series screw stepper Motor 1.8°(17H series)
Model | Current | Resistance | Inductance | Rotational Inertia | Holding torque| | Body Length | Weight | |||
A | 2 | mH | g.cm2 | N.M | mm | kg | ||||
42HS34-1504TS | 1.5 | 2.1 | 4.2 | 35 | 0.25 | 34 | 0.22 | |||
42HS40-1704TS | 1.7 | 1.65 | 4 | 54 | 0.45 | 40 | 0.28 | |||
42HS48-1704TS | 1.7 | 1.65 | 4.1 | 68 | 0.55 | 48 | 0.35 | |||
42HS60-1704TS | 1.7 | 3 | 6 | 80 | 0.70 | 60 | 0.48 |
57 Series Stepper Motor 1.8°(23H series)
Model | Current | Resistance | Inductance | Rotational Inertia | Holding torque | Body Length | Weight | ||
A | o | mH | g.cm2 | N.M | mm | kg | |||
57HS56-3004 | 3 | 0.7 | 3.6 | 200 | 1.2 | 56 | 0.7 | ||
57Hs76-4004 | 4 | 1.0 | 4.4 | 480 | 2 | 76 | 1.15 | ||
57Hs100-4004 | 4 | 1.2 | 1.1 | 550 | 2.8 | 100 | 1.65 | ||
57HS112-4004 | 4 | 1.5 | 2.8 | 600 | 3.2 | 112 | 1.75 |
86 Series Stepper Motor 1.8°(34H series)
Model | Current | Resistance | Inductance | Rotational Inertia | Holding torque| | Body Length | Weight | ||
A | o | mH | g.cm2 | N.M | mm | kg | |||
86Hs80-5004 | 5 | 0.65 | 7 | 1600 | 4.5 | 76 | 2.4 | ||
86HS10o-6004 | 6 | 0.50 | 11.6 | 2200 | 6.5 | 100 | 3.2 | ||
86HS118-6004 | 6 | 0.60 | 3.4 | 3200 | 8.5 | 118 | 4 | ||
86HS150-6004 | 6 | 0.7 | 6.3 | 4800 | 12 | 150 | 5.5 |
Application Area
Product Recommendation
Stepper motor | Brushless motor | Synchronous motor |
Company Profile
HangZhou Sino-pan Electric Co., Ltd. is an export-oriented enterprise. Located in Xihu (West Lake) Dis. District, HangZhou City, ZheJiang Province, China. After years of operation, the scale of our enterprise has continued to expand. Gradually grow into a group company. At present, our company mainly produces automotive bulbs (such as halogen bulbs and automotive LED bulbs/as well as household LEDs and commercial LEDs), motors (brushless motors/stepping motors/synchronous motors/asynchronous motors). At the same time, we are also appointed by many clients as purchasing and quality inspection agents in China.
We provide you with high-quality, fast, efficient and inexpensive automotive lighting, motors and auxiliary electrical services. Zhongpan welcomes your patronage with a sHangZhou, and we will provide you with a variety of satisfactory products and a full range of consulting services. We firmly believe that the cooperation with us will be infinitely better! Strive to create a stronger tomorrow for our customers!
Packaging & Shipping
FAQ
Q1. Can I provide sample orders for your products?
A: Of course, you can check our quality before ordering. If you have any requirements, please contact us.
Q2. What is your delivery time?
A: It depends on the order quantity. Usually, it takes about 3-7 days after receiving the small deposit. Bulk ordering takes 10-20 days.
Q3. What kind of customers and what kind of companies do you work with?
A: We have 20 years of export experience and serve more than 100 customers, such as retailers, wholesalers, and online store owners.
Q4. Is it possible to put our logo on your product or product packaging?
A: Of course, we have a factory, welcome to customize your brand, LOGO, color, product manual, packaging, etc.
Q5: Can you OEM for me?
A: We accept all OEM orders, just contact us and give me your design. We will provide you with a reasonable price and make samples for you as soon as possible.
Q6: What are your payment terms?
A: According to T/T, LC AT SIGHT, 30% deposit in advance, and the balance 70% before shipment.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industrial, Machine Tool, Universal |
---|---|
Speed: | Variable Speed |
Number of Stator: | 2 Phase, 3 Phase, 4phase |
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
What safety considerations should be taken into account when working with micro gear motors?
When working with micro gear motors, it is important to consider the following safety considerations:
- Electrical Safety: Micro gear motors are powered by electricity, so it is crucial to follow electrical safety practices. Ensure that the motor is properly grounded, and use appropriate insulation and protective measures to prevent electrical shock hazards. Avoid working on the motor while it is energized.
- Mechanical Hazards: Micro gear motors may have rotating components, such as shafts and gears, that can pose mechanical hazards. Take precautions to prevent accidental contact with moving parts. Use protective covers or enclosures to shield the motor, and avoid reaching into the motor assembly during operation.
- Proper Installation: Follow the manufacturer’s instructions for the correct installation of the micro gear motor. Improper installation can lead to malfunctions, increased risks, and reduced performance. Ensure that the motor is securely mounted and aligned according to the recommended guidelines.
- Overloading and Overheating: Avoid overloading the micro gear motor beyond its specified limits. Exceeding the motor’s maximum torque or operating it at excessively high temperatures can lead to performance degradation, premature wear, and potential safety hazards. Monitor the motor’s operating conditions and ensure adequate cooling to prevent overheating.
- Environmental Considerations: Consider the environmental conditions in which the micro gear motor will be operated. If the motor is exposed to moisture, dust, or extreme temperatures, choose a motor with appropriate protection ratings or implement additional protective measures, such as sealing or thermal management solutions.
- Control and Automation: When integrating micro gear motors into control systems or automation setups, ensure that the control circuits and interfaces are designed and implemented correctly. Improper wiring, incorrect signal levels, or faulty control circuits can lead to unpredictable motor behavior, safety risks, or damage to the motor and other components.
- Maintenance and Inspection: Regularly inspect and maintain the micro gear motor according to the manufacturer’s recommendations. This includes cleaning, lubrication, and checking for signs of wear or damage. Perform maintenance tasks with the motor turned off and power sources disconnected to prevent accidental activation.
- Personal Protective Equipment (PPE): Depending on the specific application and associated hazards, it may be necessary to wear appropriate personal protective equipment, such as safety glasses, gloves, or protective clothing, when working with micro gear motors. Assess the risks and adhere to safety guidelines to determine the necessary PPE.
Paying attention to these safety considerations when working with micro gear motors helps mitigate risks, ensures proper functionality, and promotes a safe working environment. It is important to familiarize oneself with the specific safety guidelines provided by the manufacturer and adhere to any local safety regulations or standards applicable to the industry or application.
Can you provide examples of innovative uses of micro gear motors in modern technology?
Micro gear motors have found innovative applications across various modern technologies. Here are some examples:
- Drones: Micro gear motors are commonly used in drones to drive the propellers and control the flight. Their compact size, lightweight design, and precise control capabilities make them ideal for achieving stable and agile flight maneuvers.
- Robotics: Micro gear motors play a crucial role in robotics, powering the joints and actuators of robotic arms, grippers, and humanoid robots. Their precise control, compact form factor, and high torque-to-size ratio enable robots to perform delicate and precise manipulations in industrial automation, medical procedures, and research applications.
- Automotive Systems: Micro gear motors are used in various automotive systems, such as power windows, door locks, and seat adjustments. Their small size and high torque allow for efficient and reliable operation of these mechanisms within the limited space available in vehicles.
- Medical Devices: Micro gear motors are utilized in medical devices and equipment, including surgical robots, prosthetics, insulin pumps, and lab automation systems. Their precise control, compact size, and low power consumption make them suitable for applications requiring fine movements, accurate dosing, and miniaturization.
- Consumer Electronics: Micro gear motors are incorporated into numerous consumer electronic devices. They can be found in cameras for lens movement and autofocus, wearable devices for haptic feedback and vibration, and home appliances for precise control of valves, fans, and robotic components.
- Smart Home Systems: Micro gear motors are employed in smart home systems to control various functions, such as motorized curtains, blinds, and awnings. Their precise control, quiet operation, and compatibility with automation systems allow for convenient and customizable control of these home features.
These examples represent just a few of the many innovative uses of micro gear motors in modern technology. Their versatility, precision, and compact design make them valuable components in a wide range of applications, contributing to advancements in automation, robotics, electronics, and beyond.
Can you explain the advantages of using micro gear motors in small electronic devices?
Using micro gear motors in small electronic devices offers several advantages. Here are some key benefits:
1. Compact Size:
Micro gear motors are specifically designed to be small and lightweight, making them ideal for integration into small electronic devices. Their compact size allows for efficient utilization of limited space within the device, enabling designers to create sleek and portable products.
2. Precise Motion Control:
Micro gear motors provide precise motion control capabilities, allowing for accurate positioning and controlled movements in small electronic devices. This is essential for applications that require precise adjustments, such as camera autofocus, zoom controls, or robotic movements in miniature robots.
3. High Gear Ratio:
Micro gear motors often have higher gear ratios compared to larger gear motors. The gear mechanism in micro gear motors provides a greater reduction in rotational speed and an increase in torque output. This allows for efficient power transmission and enables the motor to generate sufficient torque despite its small size.
4. Energy Efficiency:
Micro gear motors are designed to operate efficiently with low power consumption. Their compact size reduces the amount of power required for operation, making them suitable for battery-powered devices or applications where energy efficiency is a priority. This helps to extend the battery life of portable electronic devices.
5. Low Noise and Vibration:
Micro gear motors are often engineered to minimize noise and vibration levels during operation. This is advantageous for small electronic devices, such as smartphones, where a quiet and smooth operation is desired. Reduced noise and vibration contribute to a better user experience and overall product satisfaction.
6. Reliability and Durability:
Micro gear motors are built to withstand the demands of continuous operation in small electronic devices. They are designed with high-quality materials and precision manufacturing techniques to ensure reliability and durability. This is crucial for electronic devices that may undergo frequent handling or experience various environmental conditions.
7. Cost-Effective:
Micro gear motors are generally cost-effective compared to larger gear motors. Their smaller size and simpler construction contribute to lower manufacturing costs. Additionally, their use in small electronic devices reduces the overall material and production costs of the device itself.
8. Integration Flexibility:
Micro gear motors offer flexibility in terms of integration into small electronic devices. They can be easily mounted or integrated into compact spaces, allowing for flexible design options. This flexibility enables designers to incorporate motion control capabilities into a wide range of small electronic devices.
Overall, the advantages of using micro gear motors in small electronic devices include their compact size, precise motion control, high gear ratio, energy efficiency, low noise and vibration, reliability, cost-effectiveness, and integration flexibility. These advantages contribute to the functionality, performance, and user experience of small electronic devices across various industries.
editor by CX 2024-04-02
China Custom NEMA 23 Geared Stepper Motor with RV30 RV40 Worm Gearbox Speed Reducer Ratio 20 and 50 with Good quality
Product Description
General Specification:
Step Angle Accuracy: ±5%
Resistance Accuracy: ±10%
Inductance Accuracy: ±20%
Temperature Rise: 80°C Max
Ambient Temperature: -20°C~+50°C
Insulation Resistance: 100MΩ Min., 500VDC
Dielectric Strength: 500VAC for 1 minute
Shaft Radial Play: 0.02Max (450g-load)
Shaft Axial Play: 0.08Max (450g-load)
Specification
Model No. | Motor Length | Current /Phase |
Resistance /Phase |
Inductance /Phase |
Holding Torque | # of Leads | Detent Torque | Rotor Inertia | Mass | ||
(L)mm | A | Ω | mH | N.m | No. | g.cm | g.cm | Kg | |||
JK60HS56-2008 | unipolar | 56 | 2 | 1.8 | 3. | 1.17 | 8 | 700 | 300 | 0.77 | |
parallel | 2.8 | 0.9 | 3.6 | 1.65 | |||||||
Series | 1.4 | 3.6 | 14.4 | 1.65 | |||||||
JK60HS67-2008 | unipolar | 67 | 2 | 2.4 | 4.6 | 1.5 | 8 | 900 | 570 | 1.2 | |
parallel | 2.8 | 1.2 | 4.6 | 2.1 | |||||||
Series | 1.4 | 4.8 | 18.4 | 2.1 | |||||||
JK60HS88-2008 | unipolar | 88 | 2 | 3 | 6.8 | 2.2 | 8 | 1000 | 840 | 1.4 | |
parallel | 2.8 | 1.5 | 6.8 | 3.1 | |||||||
Series | 1.4 | 6 | 27.2 | 3.1 | |||||||
JK60HS100-2008 | unipolar | 100 | 2 | 3.2 | 6.4 | 2.8 | 8 | 1100 | 980 | 1.7 | |
parallel | 2.8 | 1.6 | 6.4 | 4.0 | |||||||
Series | 1.4 | 6.4 | 25.6 | 4.0 | |||||||
JK60HS111-2008 | unipolar | 111 | 2.0 | 4.4 | 8.3 | 3.2 | 8 | 1200 | 1120 | 1.9 | |
parallel | 2.8 | 2.2 | 8.3 | 4.5 | |||||||
Series | 1.4 | 8.8 | 33.2 | 4.5 |
Drawing
(unit=mm)
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | 3D Printer |
---|---|
Speed: | Low Speed |
Number of Stator: | Two-Phase |
Excitation Mode: | HB-Hybrid |
Function: | Driving |
Number of Poles: | 2 |
Samples: |
US$ 59/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
What types of feedback mechanisms are commonly integrated into gear motors for control?
Gear motors often incorporate feedback mechanisms to provide control and improve their performance. These feedback mechanisms enable the motor to monitor and adjust its operation based on various parameters. Here are some commonly integrated feedback mechanisms in gear motors:
1. Encoder Feedback:
An encoder is a device that provides position and speed feedback by converting the motor’s mechanical motion into electrical signals. Encoders commonly used in gear motors include:
- Incremental Encoders: These encoders provide information about the motor’s shaft position and speed relative to a reference point. They generate pulses as the motor rotates, allowing precise measurement of position and speed changes.
- Absolute Encoders: Absolute encoders provide the precise position of the motor’s shaft within a full revolution. They do not require a reference point and provide accurate feedback even after power loss or motor restart.
2. Hall Effect Sensors:
Hall effect sensors use the principle of the Hall effect to detect the presence and strength of a magnetic field. They are commonly used in gear motors for speed and position sensing. Hall effect sensors provide feedback by detecting changes in the motor’s magnetic field and converting them into electrical signals.
3. Current Sensors:
Current sensors monitor the electrical current flowing through the motor’s windings. By measuring the current, these sensors provide feedback regarding the motor’s torque, load conditions, and power consumption. Current sensors are essential for motor control strategies such as current limiting, overcurrent protection, and closed-loop control.
4. Temperature Sensors:
Temperature sensors are integrated into gear motors to monitor the motor’s temperature. They provide feedback on the motor’s thermal conditions, allowing the control system to adjust the motor’s operation to prevent overheating. Temperature sensors are crucial for ensuring the motor’s reliability and preventing damage due to excessive heat.
5. Hall Effect Limit Switches:
Hall effect limit switches are used to detect the presence or absence of a magnetic field within a specific range. They are commonly employed as end-of-travel or limit switches in gear motors. Hall effect limit switches provide feedback to the control system, indicating when the motor has reached a specific position or when it has moved beyond the allowed range.
6. Resolver Feedback:
A resolver is an electromagnetic device used to determine the position and speed of a rotating shaft. It provides feedback by generating sine and cosine signals that correspond to the shaft’s angular position. Resolver feedback is commonly used in high-performance gear motors requiring accurate position and speed control.
These feedback mechanisms, when integrated into gear motors, enable precise control, monitoring, and adjustment of various motor parameters. By utilizing feedback signals from encoders, Hall effect sensors, current sensors, temperature sensors, limit switches, or resolvers, the control system can optimize the motor’s performance, ensure accurate positioning, maintain speed control, and protect the motor from excessive loads or overheating.
Are there environmental benefits to using gear motors in certain applications?
Yes, there are several environmental benefits associated with the use of gear motors in certain applications. Gear motors offer advantages that can contribute to increased energy efficiency, reduced resource consumption, and lower environmental impact. Here’s a detailed explanation of the environmental benefits of using gear motors:
1. Energy Efficiency:
Gear motors can improve energy efficiency in various ways:
- Torque Conversion: Gear reduction allows gear motors to deliver higher torque output while operating at lower speeds. This enables the motor to perform tasks that require high torque, such as lifting heavy loads or driving machinery with high inertia, more efficiently. By matching the motor’s power characteristics to the load requirements, gear motors can operate closer to their peak efficiency, minimizing energy waste.
- Controlled Speed: Gear reduction provides finer control over the motor’s rotational speed. This allows for more precise speed regulation, reducing the likelihood of energy overconsumption and optimizing energy usage.
2. Reduced Resource Consumption:
The use of gear motors can lead to reduced resource consumption and environmental impact:
- Smaller Motor Size: Gear reduction allows gear motors to deliver higher torque with smaller, more compact motors. This reduction in motor size translates to reduced material and resource requirements during manufacturing. It also enables the use of smaller and lighter equipment, which can contribute to energy savings during operation and transportation.
- Extended Motor Lifespan: The gear mechanism in gear motors helps reduce the load and stress on the motor itself. By distributing the load more evenly, gear motors can help extend the lifespan of the motor, reducing the need for frequent replacements and the associated resource consumption.
3. Noise Reduction:
Gear motors can contribute to a quieter and more environmentally friendly working environment:
- Noise Dampening: Gear reduction can help reduce the noise generated by the motor. The gear mechanism acts as a noise dampener, absorbing and dispersing vibrations and reducing overall noise emission. This is particularly beneficial in applications where noise reduction is important, such as residential areas, offices, or noise-sensitive environments.
4. Precision and Control:
Gear motors offer enhanced precision and control, which can lead to environmental benefits:
- Precise Positioning: Gear motors, especially stepper motors and servo motors, provide precise positioning capabilities. This accuracy allows for more efficient use of resources, minimizing waste and optimizing the performance of machinery or systems.
- Optimized Control: Gear motors enable precise control over speed, torque, and movement. This control allows for better optimization of processes, reducing energy consumption and minimizing unnecessary wear and tear on equipment.
In summary, using gear motors in certain applications can have significant environmental benefits. Gear motors offer improved energy efficiency, reduced resource consumption, noise reduction, and enhanced precision and control. These advantages contribute to lower energy consumption, reduced environmental impact, and a more sustainable approach to power transmission and control. When selecting motor systems for specific applications, considering the environmental benefits of gear motors can help promote energy efficiency and sustainability.
What are the different types of gears used in gear motors, and how do they impact performance?
Various types of gears are used in gear motors, each with its unique characteristics and impact on performance. The choice of gear type depends on the specific requirements of the application, including torque, speed, efficiency, noise level, and space constraints. Here’s a detailed explanation of the different types of gears used in gear motors and their impact on performance:
1. Spur Gears:
Spur gears are the most common type of gears used in gear motors. They have straight teeth that are parallel to the gear’s axis and mesh with another spur gear to transmit power. Spur gears provide high efficiency, reliable operation, and cost-effectiveness. However, they can generate significant noise due to the meshing of teeth, and they may produce axial thrust forces. Spur gears are suitable for applications that require high torque transmission and moderate to high rotational speeds.
2. Helical Gears:
Helical gears have angled teeth that are cut at an angle to the gear’s axis. This helical tooth configuration enables gradual engagement and smoother tooth contact, resulting in reduced noise and vibration compared to spur gears. Helical gears provide higher load-carrying capacity and are suitable for applications that require high torque transmission and moderate to high rotational speeds. They are commonly used in gear motors where low noise operation is desired, such as in automotive applications and industrial machinery.
3. Bevel Gears:
Bevel gears have teeth that are cut on a conical surface. They are used to transmit power between intersecting shafts, usually at right angles. Bevel gears can have straight teeth (straight bevel gears) or curved teeth (spiral bevel gears). These gears provide efficient power transmission and precise motion control in applications where shafts need to change direction. Bevel gears are commonly used in gear motors for applications such as steering systems, machine tools, and printing presses.
4. Worm Gears:
Worm gears consist of a worm (a type of screw) and a mating gear called a worm wheel or worm gear. The worm has a helical thread that meshes with the worm wheel, resulting in a compact and high gear reduction ratio. Worm gears provide high torque transmission, low noise operation, and self-locking properties, which prevent reverse motion. They are commonly used in gear motors for applications that require high gear reduction and locking capabilities, such as in lifting mechanisms, conveyor systems, and machine tools.
5. Planetary Gears:
Planetary gears, also known as epicyclic gears, consist of a central sun gear, multiple planet gears, and an outer ring gear. The planet gears mesh with both the sun gear and the ring gear, creating a compact and efficient gear system. Planetary gears offer high torque transmission, high gear reduction ratios, and excellent load distribution. They are commonly used in gear motors for applications that require high torque and compact size, such as in robotics, automotive transmissions, and industrial machinery.
6. Rack and Pinion:
Rack and pinion gears consist of a linear rack (a straight toothed bar) and a pinion gear (a spur gear with a small diameter). The pinion gear meshes with the rack to convert rotary motion into linear motion or vice versa. Rack and pinion gears provide precise linear motion control and are commonly used in gear motors for applications such as linear actuators, CNC machines, and steering systems.
The choice of gear type in a gear motor depends on factors such as the desired torque, speed, efficiency, noise level, and space constraints. Each type of gear offers specific advantages and impacts the performance of the gear motor differently. By selecting the appropriate gear type, gear motors can be optimized for their intended applications, ensuring efficient and reliable power transmission.
editor by CX 2024-03-29
China Good quality Planetary Gearbox High-Precision Transmission Ratio 30: 1 Planetary Stepper Servo Gearbox Motor vacuum pump belt
Product Description
Planetary Gearbox High-precision Transmission Ratio 30:1 Planetary Stepping Stepping Servo Gearbox Motor
Planetary gearbox is a kind of reducer with wide versatility. The inner gear adopts low carbon alloy steel carburizing quenching and grinding or nitriding process. Planetary gearbox has the characteristics of small structure size, large output torque, high speed ratio, high efficiency, safe and reliable performance, etc. The inner gear of the planetary gearbox can be divided into spur gear and helical gear. Customers can choose the right precision reducer according to the needs of the application.
Product Description
Planetary reducer characteristic:
1. Split design, more output options
2. The input and output dimensions can be seamlessly switched with the straight tooth series
3. The double support cage planet carrier has high reliability and is suitable for high-speed and frequent CHINAMFG and reverse rotation
4. The design of double-stage single support support has high cost performance
5. Keyway can be opened for the force shaft
6. Helical gear transmission is more stable and has large bearing capacity
7. Accurate positioning of low return clearance
8. Specification range: 60-120mm
9. Speed ratio range: 3-100
10. Accuracy range: 1-3 arcmin (P1); 3-5 arcmin (P2)
Specifications | PW60 | PW90 | PW120 | |||
Technal Parameters | ||||||
Max. Torque | Nm | 1.5times rated torque | ||||
Emergency Stop Torque | Nm | 2.5times rated torque | ||||
Max. Radial Load | N | 1350 | 3100 | 6100 | ||
Max. Axial Load | N | 630 | 1300 | 2800 | ||
Torsional Rigidity | Nm/arcmin | 5 | 10 | 20 | ||
Max.Input Speed | rpm | 6000 | 6000 | 6000 | ||
Rated Input Speed | rpm | 4000 | 3000 | 3000 | ||
Noise | dB | ≤58 | ≤60 | ≤65 | ||
Average Life Time | h | 20000 | ||||
Efficiency Of Full Load | % | L1≥95% L2≥90% | ||||
Return Backlash | P1 | L1 | arcmin | ≤3 | ≤3 | ≤3 |
L2 | arcmin | ≤5 | ≤5 | ≤5 | ||
P2 | L1 | arcmin | ≤5 | ≤5 | ≤5 | |
L2 | arcmin | ≤7 | ≤7 | ≤7 | ||
Moment Of Inertia Table | L1 | 3 | Kg*cm2 | 0.16 | 0.61 | 3.25 |
4 | Kg*cm2 | 0.14 | 0.48 | 2.74 | ||
5 | Kg*cm2 | 0.13 | 0.47 | 2.71 | ||
7 | Kg*cm2 | 0.13 | 0.45 | 2.62 | ||
8 | Kg*cm2 | 0.13 | 0.45 | 2.62 | ||
10 | Kg*cm2 | 0.13 | 0.40 | 2.57 | ||
L2 | 12 | Kg*cm2 | 0.13 | 0.61 | 0.45 | |
15 | Kg*cm2 | 0.13 | 0.61 | 0.45 | ||
20 | Kg*cm2 | 0.13 | 0.45 | 0.45 | ||
25 | Kg*cm2 | 0.13 | 0.40 | 0.40 | ||
28 | Kg*cm2 | 0.13 | 0.45 | 0.45 | ||
30 | Kg*cm2 | 0.13 | 0.67 | 0.45 | ||
35 | Kg*cm2 | 0.13 | 0.45 | 0.45 | ||
40 | Kg*cm2 | 0.13 | 0.45 | 0.45 | ||
50 | Kg*cm2 | 0.13 | 0.40 | 0.40 | ||
70 | Kg*cm2 | 0.13 | 0.40 | 0.40 | ||
100 | Kg*cm2 | 0.13 | 0.40 | 0.40 | ||
Technical Parameter | Level | Ratio | PW60 | PW90 | PW120 | |
Rated Torque | L1 | 3 | Nm | 35 | 100 | 165 |
4 | Nm | 43 | 125 | 220 | ||
5 | Nm | 43 | 125 | 220 | ||
7 | Nm | 40 | 98 | 200 | ||
8 | Nm | 40 | 90 | 200 | ||
10 | Nm | 25 | 70 | 150 | ||
L2 | 12 | Nm | 35 | / | 165 | |
15 | Nm | 35 | 100 | 165 | ||
20 | Nm | 43 | 125 | 220 | ||
25 | Nm | 43 | 125 | 220 | ||
28 | Nm | 43 | 125 | 220 | ||
30 | Nm | 35 | 100 | 165 | ||
35 | Nm | 43 | 125 | 210 | ||
40 | Nm | 43 | 125 | 210 | ||
50 | Nm | 43 | 125 | 210 | ||
70 | Nm | 40 | 98 | 200 | ||
100 | Nm | 25 | 70 | 150 | ||
Degree Of Protection | IP65 | |||||
Operation Temprature | ºC | – 10ºC to -90ºC | ||||
Weight | L1 | kg | 1.2 | 2.8 | 7.6 | |
L2 | kg | 1.55 | 3.95 | 10.5 |
Model Selection:
Company Profile
Packaging & Shipping
1. Lead time: 7-10 working days as usual, 20 working days in busy season, it will be based on the detailed order quantity;
2. Delivery: DHL/ UPS/ FEDEX/ EMS/ TNT
Application: | Machine Tool |
---|---|
Speed: | Low Speed |
Function: | Driving |
Casing Protection: | Closed Type |
Starting Mode: | Direct on-line Starting |
Certification: | ISO9001 |
Samples: |
US$ 289/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Are there innovations or emerging technologies in the field of gear motor design?
Yes, there are several innovations and emerging technologies in the field of gear motor design. These advancements aim to improve the performance, efficiency, compactness, and reliability of gear motors. Here are some notable innovations and emerging technologies in gear motor design:
1. Miniaturization and Compact Design:
Advancements in manufacturing techniques and materials have enabled the miniaturization of gear motors without compromising their performance. Gear motors with compact designs are highly sought after in applications where space is limited, such as robotics, medical devices, and consumer electronics. Innovative approaches like micro-gear motors and integrated motor-gear units are being developed to achieve smaller form factors while maintaining high torque and efficiency.
2. High-Efficiency Gearing:
New gear designs focus on improving efficiency by reducing friction and mechanical losses. Advanced gear manufacturing techniques, such as precision machining and 3D printing, allow for the creation of intricate gear tooth profiles that optimize power transmission and minimize losses. Additionally, the use of high-performance materials, coatings, and lubricants helps reduce friction and wear, improving overall gear motor efficiency.
3. Magnetic Gearing:
Magnetic gearing is an emerging technology that replaces traditional mechanical gears with magnetic fields to transmit torque. It utilizes the interaction of permanent magnets to transfer power, eliminating the need for physical gear meshing. Magnetic gearing offers advantages such as high efficiency, low noise, compactness, and maintenance-free operation. While still being developed and refined, magnetic gearing holds promise for various applications, including gear motors.
4. Integrated Electronics and Controls:
Gear motor designs are incorporating integrated electronics and controls to enhance performance and functionality. Integrated motor drives and controllers simplify system integration, reduce wiring complexity, and allow for advanced control features. These integrated solutions offer precise speed and torque control, intelligent feedback mechanisms, and connectivity options for seamless integration into automation systems and IoT (Internet of Things) platforms.
5. Smart and Condition Monitoring Capabilities:
New gear motor designs incorporate smart features and condition monitoring capabilities to enable predictive maintenance and optimize performance. Integrated sensors and monitoring systems can detect abnormal operating conditions, track performance parameters, and provide real-time feedback for proactive maintenance and troubleshooting. This helps prevent unexpected failures, extend the lifespan of gear motors, and improve overall system reliability.
6. Energy-Efficient Motor Technologies:
Gear motor design is influenced by advancements in energy-efficient motor technologies. Brushless DC (BLDC) motors and synchronous reluctance motors (SynRM) are gaining popularity due to their higher efficiency, better power density, and improved controllability compared to traditional brushed DC and induction motors. These motor technologies, when combined with optimized gear designs, contribute to overall system energy savings and performance improvements.
These are just a few examples of the innovations and emerging technologies in gear motor design. The field is continuously evolving, driven by the need for more efficient, compact, and reliable motion control solutions in various industries. Gear motor manufacturers and researchers are actively exploring new materials, manufacturing techniques, control strategies, and system integration approaches to meet the evolving demands of modern applications.
Are there environmental benefits to using gear motors in certain applications?
Yes, there are several environmental benefits associated with the use of gear motors in certain applications. Gear motors offer advantages that can contribute to increased energy efficiency, reduced resource consumption, and lower environmental impact. Here’s a detailed explanation of the environmental benefits of using gear motors:
1. Energy Efficiency:
Gear motors can improve energy efficiency in various ways:
- Torque Conversion: Gear reduction allows gear motors to deliver higher torque output while operating at lower speeds. This enables the motor to perform tasks that require high torque, such as lifting heavy loads or driving machinery with high inertia, more efficiently. By matching the motor’s power characteristics to the load requirements, gear motors can operate closer to their peak efficiency, minimizing energy waste.
- Controlled Speed: Gear reduction provides finer control over the motor’s rotational speed. This allows for more precise speed regulation, reducing the likelihood of energy overconsumption and optimizing energy usage.
2. Reduced Resource Consumption:
The use of gear motors can lead to reduced resource consumption and environmental impact:
- Smaller Motor Size: Gear reduction allows gear motors to deliver higher torque with smaller, more compact motors. This reduction in motor size translates to reduced material and resource requirements during manufacturing. It also enables the use of smaller and lighter equipment, which can contribute to energy savings during operation and transportation.
- Extended Motor Lifespan: The gear mechanism in gear motors helps reduce the load and stress on the motor itself. By distributing the load more evenly, gear motors can help extend the lifespan of the motor, reducing the need for frequent replacements and the associated resource consumption.
3. Noise Reduction:
Gear motors can contribute to a quieter and more environmentally friendly working environment:
- Noise Dampening: Gear reduction can help reduce the noise generated by the motor. The gear mechanism acts as a noise dampener, absorbing and dispersing vibrations and reducing overall noise emission. This is particularly beneficial in applications where noise reduction is important, such as residential areas, offices, or noise-sensitive environments.
4. Precision and Control:
Gear motors offer enhanced precision and control, which can lead to environmental benefits:
- Precise Positioning: Gear motors, especially stepper motors and servo motors, provide precise positioning capabilities. This accuracy allows for more efficient use of resources, minimizing waste and optimizing the performance of machinery or systems.
- Optimized Control: Gear motors enable precise control over speed, torque, and movement. This control allows for better optimization of processes, reducing energy consumption and minimizing unnecessary wear and tear on equipment.
In summary, using gear motors in certain applications can have significant environmental benefits. Gear motors offer improved energy efficiency, reduced resource consumption, noise reduction, and enhanced precision and control. These advantages contribute to lower energy consumption, reduced environmental impact, and a more sustainable approach to power transmission and control. When selecting motor systems for specific applications, considering the environmental benefits of gear motors can help promote energy efficiency and sustainability.
Can you explain the advantages of using gear motors in various mechanical systems?
Gear motors offer several advantages when utilized in various mechanical systems. Their unique characteristics make them well-suited for applications that require controlled power transmission, precise speed control, and torque amplification. Here’s a detailed explanation of the advantages of using gear motors:
1. Torque Amplification:
One of the key advantages of gear motors is their ability to amplify torque. By using different gear ratios, gear motors can increase or decrease the output torque from the motor. This torque amplification is crucial in applications that require high torque output, such as lifting heavy loads or operating machinery with high resistance. Gear motors allow for efficient power transmission, enabling the system to handle demanding tasks effectively.
2. Speed Control:
Gear motors provide precise speed control, allowing for accurate and controlled movement in mechanical systems. By selecting the appropriate gear ratio, the rotational speed of the output shaft can be adjusted to match the requirements of the application. This speed control capability ensures that the mechanical system operates at the desired speed, whether it needs to be fast or slow. Gear motors are commonly used in applications such as conveyors, robotics, and automated machinery, where precise speed control is essential.
3. Directional Control:
Another advantage of gear motors is their ability to control the rotational direction of the output shaft. By using different types of gears, such as spur gears, bevel gears, or worm gears, the direction of rotation can be easily changed. This directional control is beneficial in applications that require bidirectional movement, such as in actuators, robotic arms, and conveyors. Gear motors offer reliable and efficient directional control, contributing to the versatility and functionality of mechanical systems.
4. Efficiency and Power Transmission:
Gear motors are known for their high efficiency in power transmission. The gear system helps distribute the load across multiple gears, reducing the strain on individual components and minimizing power losses. This efficient power transmission ensures that the mechanical system operates with optimal energy utilization and minimizes wasted power. Gear motors are designed to provide reliable and consistent power transmission, resulting in improved overall system efficiency.
5. Compact and Space-Saving Design:
Gear motors are compact in size and offer a space-saving solution for mechanical systems. By integrating the motor and gear system into a single unit, gear motors eliminate the need for additional components and reduce the overall footprint of the system. This compact design is especially beneficial in applications with limited space constraints, allowing for more efficient use of available space while still delivering the necessary power and functionality.
6. Durability and Reliability:
Gear motors are designed to be robust and durable, capable of withstanding demanding operating conditions. The gear system helps distribute the load, reducing the stress on individual gears and increasing overall durability. Additionally, gear motors are often constructed with high-quality materials and undergo rigorous testing to ensure reliability and longevity. This makes gear motors well-suited for continuous operation in industrial and commercial applications, where reliability is crucial.
By leveraging the advantages of torque amplification, speed control, directional control, efficiency, compact design, durability, and reliability, gear motors provide a reliable and efficient solution for various mechanical systems. They are widely used in industries such as robotics, automation, manufacturing, automotive, and many others, where precise and controlled mechanical power transmission is essential.
editor by CX 2023-12-12
China Standard 12V 24V NEMA 8 11 17 23 24 34 42 52 Mini Micro Ball Screw Linear Geared Closed Loop Stepper Step Stepping Motor Motors with Planetary Gearbox / Brake / Encoder vacuum pump belt
Product Description
12V 24V NEMA 8 Mini Micro Ball Screw Linear Geared Closed Loop Stepper Step Stepping Motor Motors with Planetary Gearbox / Brake / Encoder
Stepper Motor Overview:
Motor series | Phase No. | Step angle | Motor length | Motor size | Leads No. | Holding torque |
Nema 8 | 2 phase | 1.8 degree | 30~42mm | 20x20mm | 4 | 180~300g.cm |
Nema 11 | 2 phase | 1.8 degree | 32~51mm | 28x28mm | 4 or 6 | 430~1200g.cm |
Nema 14 | 2 phase | 0.9 or 1.8 degree | 27~42mm | 35x35mm | 4 | 1000~2000g.cm |
Nema 16 | 2 phase | 1.8 degree | 20~44mm | 39x39mm | 4 or 6 | 650~2800g.cm |
Nema 17 | 2 phase | 0.9 or 1.8 degree | 25~60mm | 42x42mm | 4 or 6 | 1.5~7.3kg.cm |
Nema 23 | 2 phase | 0.9 or 1.8 degree | 41~112mm | 57x57mm | 4 or 6 or 8 | 0.39~3.1N.m |
3 phase | 1.2 degree | 42~79mm | 57x57mm | – | 0.45~1.5N.m | |
Nema 24 | 2 phase | 1.8 degree | 56~111mm | 60x60mm | 8 | 1.17~4.5N.m |
Nema 34 | 2 phase | 1.8 degree | 67~155mm | 86x86mm | 4 or 8 | 3.4~12.2N.m |
3 phase | 1.2 degree | 65~150mm | 86x86mm | – | 2~7N.m | |
Nema 42 | 2 phase | 1.8 degree | 99~201mm | 110x110mm | 4 | 11.2~28N.m |
3 phase | 1.2 degree | 134~285mm | 110x110mm | – | 8~25N.m | |
Nema 52 | 2 phase | 1.8 degree | 173~285mm | 130x130mm | 4 | 13.3~22.5N.m |
3 phase | 1.2 degree | 173~285mm | 130x130mm | – | 13.3~22.5N.m | |
Above only for representative products, products of special request can be made according to the customer request. |
1. The magnetic steel is high grade,we usually use the SH level type.
2. The rotor is be coated,reduce burrs,working smoothly,less noise. We test the stepper motor parts step by step.
3. Stator is be test and rotor is be test before assemble.
4. After we assemble the stepper motor, we will do 1 more test for it, to make sure the quality is good.
JKONGMOTOR stepping motor is a motor that converts electrical pulse signals into corresponding angular displacements or linear displacements. This small stepper motor can be widely used in various fields, such as a 3D printer, stage lighting, laser engraving, textile machinery, medical equipment, automation equipment, etc.
Jkongmotor Nema 8 Stepper Motor Parameters:
Model No. | Step Angle | Motor Length | Current | Resistance | Inductance | Holding Torque | # of Leads | Mass |
( °) | (L)mm | A | Ω | mH | g.cm | No. | kg | |
JK20HS30-0604 | 1.8 | 30 | 0.6 | 18 | 3.2 | 180 | 4 | 0.06 |
JK20HS33-0604 | 1.8 | 33 | 0.6 | 6.5 | 1.7 | 200 | 4 | 0.07 |
JK20HS38-0604 | 1.8 | 38 | 0.6 | 10 | 5.5 | 300 | 4 | 0.08 |
JK20HS42-0804 | 1.8 | 42 | 0.8 | 5.4 | 1.5 | 400 | 4 | 0.09 |
Jkongmotor Nema 11 Stepper Motor Parameters:
Model No. | Step Angle | Motor Length | Current | Resistance | Inductance | Holding Torque | # of Leads | Rotor Inertia | Mass |
( °) | (L)mm | A | Ω | mH | g.cm | No. | g.cm2 | Kg | |
JK28HS32-0674 | 1.8 | 32 | 0.67 | 5.6 | 3.4 | 600 | 4 | 9 | 0.11 |
JK28HS32-0956 | 1.8 | 32 | 0.95 | 2.8 | 0.8 | 430 | 6 | 9 | 0.11 |
JK28HS45-0956 | 1.8 | 45 | 0.95 | 3.4 | 1.2 | 750 | 6 | 12 | 0.14 |
JK28HS45-0674 | 1.8 | 45 | 0.67 | 6.8 | 4.9 | 950 | 4 | 12 | 0.14 |
JK28HS51-0956 | 1.8 | 51 | 0.95 | 4.6 | 1.8 | 900 | 6 | 18 | 0.2 |
JK28HS51-0674 | 1.8 | 51 | 0.67 | 9.2 | 7.2 | 1200 | 4 | 18 | 0.2 |
Jkongmotor Nema 14 Stepper Motor Parameters:
Model No. | Step Angle | Motor Length | Current | Resistance | Inductance | Holding Torque | # of Leads | Detent Torque | Rotor Inertia | Mass |
( °) | (L)mm | A | Ω | mH | g.cm | No. | g.cm | g.cm2 | Kg | |
JK35HS28-0504 | 1.8 | 28 | 0.5 | 20 | 14 | 1000 | 4 | 80 | 11 | 0.13 |
JK35HS34-1004 | 1.8 | 34 | 1 | 2.7 | 4.3 | 1400 | 4 | 100 | 13 | 0.17 |
JK35HS42-1004 | 1.8 | 42 | 1 | 3.8 | 3.5 | 2000 | 4 | 125 | 23 | 0.22 |
Jkongmotor 39mm Hybrid Stepping Motor Parameters:
Model No. | Step Angle | Motor Length | Current | Resistance | Inductance | Holding Torque | # of Leads | Detent Torque | Rotor Inertia | Mass |
( °) | (L)mm | A | Ω | mH | g.cm | No. | g.cm | g.cm2 | Kg | |
JK39HY20-0404 | 1.8 | 20 | 0.4 | 6.6 | 7.5 | 650 | 4 | 50 | 11 | 0.12 |
JK39HY20-0506 | 1.8 | 20 | 0.5 | 13 | 7.5 | 800 | 6 | 50 | 11 | 0.12 |
JK39HY34-0404 | 1.8 | 34 | 0.4 | 30 | 32 | 2100 | 4 | 120 | 20 | 0.18 |
JK39HY34-0306 | 1.8 | 34 | 0.3 | 40 | 20 | 1300 | 6 | 120 | 20 | 0.18 |
JK39HY38-0504 | 1.8 | 38 | 0.5 | 24 | 45 | 2900 | 4 | 180 | 24 | 0.2 |
JK39HY38-0806 | 1.8 | 38 | 0.8 | 7.5 | 6 | 2000 | 6 | 180 | 24 | 0.2 |
JK39HY44-0304 | 1.8 | 44 | 0.3 | 40 | 100 | 2800 | 4 | 250 | 40 | 0.25 |
Jkongmotor 42BYGH Nema 17 Step Motor Parameters:
Model No. | Step Angle | Motor Length | Current | Resistance | Inductance | Holding Torque | # of Leads | Detent Torque | Rotor Inertia | Mass |
( °) | (L)mm | A | Ω | mH | kg.cm | No. | g.cm | g.cm2 | Kg | |
JK42HS25-0404 | 1.8 | 25 | 0.4 | 24 | 36 | 1.8 | 4 | 75 | 20 | 0.15 |
JK42HS28-0504 | 1.8 | 28 | 0.5 | 20 | 21 | 1.5 | 4 | 85 | 24 | 0.22 |
JK42HS34-1334 | 1.8 | 34 | 1.33 | 2.1 | 2.5 | 2.2 | 4 | 120 | 34 | 0.22 |
JK42HS34-0406 | 1.8 | 34 | 0.4 | 24 | 15 | 1.6 | 6 | 120 | 34 | 0.22 |
JK42HS34-0956 | 1.8 | 34 | 0.95 | 4.2 | 2.5 | 1.6 | 6 | 120 | 34 | 0.22 |
JK42HS40-0406 | 1.8 | 40 | 0.4 | 30 | 30 | 2.6 | 6 | 150 | 54 | 0.28 |
JK42HS40-1684 | 1.8 | 40 | 1.68 | 1.65 | 3.2 | 3.6 | 4 | 150 | 54 | 0.28 |
JK42HS40-1206 | 1.8 | 40 | 1.2 | 3 | 2.7 | 2.9 | 6 | 150 | 54 | 0.28 |
JK42HS48-0406 | 1.8 | 48 | 0.4 | 30 | 25 | 3.1 | 6 | 260 | 68 | 0.35 |
JK42HS48-1684 | 1.8 | 48 | 1.68 | 1.65 | 2.8 | 4.4 | 4 | 260 | 68 | 0.35 |
JK42HS48-1206 | 1.8 | 48 | 1.2 | 3.3 | 2.8 | 3.17 | 6 | 260 | 68 | 0.35 |
JK42HS60-0406 | 1.8 | 60 | 0.4 | 30 | 39 | 6.5 | 6 | 280 | 102 | 0.5 |
JK42HS60-1704 | 1.8 | 60 | 1.7 | 3 | 6.2 | 7.3 | 4 | 280 | 102 | 0.5 |
JK42HS60-1206 | 1.8 | 60 | 1.2 | 6 | 7 | 5.6 | 6 | 280 | 102 | 0.5 |
Jkongmotor Nema 23 Stepper Motor Parameters:
Model No. | Step Angle | Motor Length | Current | Resistance | Inductance | Holding Torque | # of Leads | Detent Torque | Rotor Inertia | Mass |
( °) | (L)mm | A | Ω | mH | N.m | No. | g.cm | g.cm2 | Kg | |
JK57HS41-1006 | 1.8 | 41 | 1 | 7.1 | 8 | 0.48 | 6 | 250 | 150 | 0.47 |
JK57HS41-2008 | 1.8 | 41 | 2 | 1.4 | 1.4 | 0.39 | 8 | 250 | 150 | 0.47 |
JK57HS41-2804 | 1.8 | 41 | 2.8 | 0.7 | 1.4 | 0.55 | 4 | 250 | 150 | 0.47 |
JK57HS51-1006 | 1.8 | 51 | 1 | 6.6 | 8.2 | 0.72 | 6 | 300 | 230 | 0.59 |
JK57HS51-2008 | 1.8 | 51 | 2 | 1.8 | 2.7 | 0.9 | 8 | 300 | 230 | 0.59 |
JK57HS51-2804 | 1.8 | 51 | 2.8 | 0.83 | 2.2 | 1.01 | 4 | 300 | 230 | 0.59 |
JK57HS56-2006 | 1.8 | 56 | 2 | 1.8 | 2.5 | 0.9 | 6 | 350 | 280 | 0.68 |
JK57HS56-2108 | 1.8 | 56 | 2.1 | 1.8 | 2.5 | 1 | 8 | 350 | 280 | 0.68 |
JK57HS56-2804 | 1.8 | 56 | 2.8 | 0.9 | 2.5 | 1.2 | 4 | 350 | 280 | 0.68 |
JK57HS64-2804 | 1.8 | 64 | 2.8 | 0.8 | 2.3 | 1 | 4 | 400 | 300 | 0.75 |
JK57HS76-2804 | 1.8 | 76 | 2.8 | 1.1 | 3.6 | 1.89 | 4 | 600 | 440 | 1.1 |
JK57HS76-3006 | 1.8 | 76 | 3 | 1 | 1.6 | 1.35 | 6 | 600 | 440 | 1.1 |
JK57HS76-3008 | 1.8 | 76 | 3 | 1 | 1.8 | 1.5 | 8 | 600 | 440 | 1.1 |
JK57HS82-3004 | 1.8 | 82 | 3 | 1.2 | 4 | 2.1 | 4 | 1000 | 600 | 1.2 |
JK57HS82-4008 | 1.8 | 82 | 4 | 0.8 | 1.8 | 2 | 8 | 1000 | 600 | 1.2 |
JK57HS82-4204 | 1.8 | 82 | 4.2 | 0.7 | 2.5 | 2.2 | 4 | 1000 | 600 | 1.2 |
JK57HS100-4204 | 1.8 | 100 | 4.2 | 0.75 | 3 | 3 | 4 | 1100 | 700 | 1.3 |
JK57HS112-3004 | 1.8 | 112 | 3 | 1.6 | 7.5 | 3 | 4 | 1200 | 800 | 1.4 |
JK57HS112-4204 | 1.8 | 112 | 4.2 | 0.9 | 3.8 | 3.1 | 4 | 1200 | 800 | 1.4 |
Jkongmotor Nema 24 Stepper Motor Parameters:
Model No. | Wiring Diagram | Motor Length | Current | Resistance | Inductance | Holding Torque | # of Leads | Detent Torque | Rotor Inertia | Mass |
(L)mm | A | Ω | mH | N.m | No. | g.cm | g.cm2 | Kg | ||
JK60HS56-2008 | Unipolar | 56 | 2 | 1.8 | 3 | 1.17 | 8 | 700 | 300 | 0.77 |
Parallel | 2.8 | 0.9 | 3.6 | 1.65 | ||||||
Tandem | 1.4 | 3.6 | 14.4 | 1.65 | ||||||
JK60HS67-2008 | Unipolar | 67 | 2 | 2.4 | 4.6 | 1.5 | 8 | 900 | 570 | 1.2 |
Parallel | 2.8 | 1.2 | 4.6 | 2.1 | ||||||
Tandem | 1.4 | 4.8 | 18.4 | 2.1 | ||||||
JK60HS88-2008 | Unipolar | 88 | 2 | 3 | 6.8 | 2.2 | 8 | 1000 | 840 | 1.4 |
Parallel | 2.8 | 1.5 | 6.8 | 3.1 | ||||||
Tandem | 1.4 | 6 | 27.2 | 3.1 | ||||||
JK60HS100-2008 | Unipolar | 100 | 2 | 3.2 | 6.4 | 2.8 | 8 | 1100 | 980 | 1.7 |
Parallel | 2.8 | 1.6 | 6.4 | 4 | ||||||
Tandem | 1.4 | 6.4 | 25.6 | 4 | ||||||
JK60HS111-2008 | Unipolar | 111 | 2 | 4.4 | 8.3 | 3.2 | 8 | 1200 | 1120 | 1.9 |
Parallel | 2.8 | 2.2 | 8.3 | 4.5 | ||||||
Tandem | 1.4 | 8.8 | 33.2 | 4.5 |
Jkongmotor Nema 34 86BYGH Stepper Motor Parameters:
Model No. | Step Angle | Motor Length | Current | Resistance | Inductance | Holding Torque | # of Leads | Detent Torque | Rotor Inertia | Mass |
( °) | (L)mm | A | Ω | mH | N.m | No. | Kg.cm | g.cm2 | Kg | |
JK86HS68-5904 | 1.8 | 67 | 5.9 | 0.28 | 1.7 | 3.4 | 4 | 0.8 | 1000 | 1.7 |
JK86HS68-2808 | 1.8 | 67 | 2.8 | 1.4 | 3.9 | 3.4 | 8 | 0.8 | 1000 | 1.7 |
JK86HS78-5504 | 1.8 | 78 | 5.5 | 0.46 | 4 | 4.6 | 4 | 1.2 | 1400 | 2.3 |
JK86HS78-4208 | 1.8 | 78 | 4.2 | 0.75 | 3.4 | 4.6 | 8 | 1.2 | 1400 | 2.3 |
JK86HS97-4504 | 1.8 | 97 | 4.5 | 0.66 | 3 | 5.8 | 4 | 1.7 | 2100 | 3 |
JK86HS97-4008 | 1.8 | 97 | 4 | 0.98 | 4.1 | 4.7 | 8 | 1.7 | 2100 | 3 |
JK86HS100-6004 | 1.8 | 100 | 6 | 0.36 | 2.8 | 7 | 4 | 1.9 | 2200 | 3.1 |
JK86HS115-6004 | 1.8 | 115 | 6 | 0.6 | 6.5 | 8.7 | 4 | 2.4 | 2700 | 3.8 |
JK86HS115-4208 | 1.8 | 115 | 4.2 | 0.9 | 6 | 8.7 | 8 | 2.4 | 2700 | 3.8 |
JK86HS126-6004 | 1.8 | 126 | 6 | 0.58 | 6.5 | 6.3 | 4 | 2.9 | 3200 | 4.5 |
JK86HS155-6004 | 1.8 | 155 | 6 | 0.68 | 9 | 13 | 4 | 3.6 | 4000 | 5.4 |
JK86HS155-4208 | 1.8 | 155 | 4.2 | 1.25 | 8 | 12.2 | 8 | 3.6 | 4000 | 5.4 |
Jkongmotor Nema 42 Stepper Motor Parameters:
Model | Step Angle | Motor Length | Current | Resistance | Inductance | Holding Torque | # of Leads | Detent Torque | Rotor Inertia | Mass |
( °) | (L)mm | A | Ω | mH | N.m | No. | kg.cm | g.cm2 | Kg | |
JK110HS99-5504 | 1.8 | 99 | 5.5 | 0.9 | 12 | 11.2 | 4 | 3 | 5500 | 5 |
JK110HS115-6004 | 1.8 | 115 | 6 | 0.48 | 7 | 12 | 4 | 4 | 7100 | 6 |
JK110HS150-6504 | 1.8 | 150 | 6.5 | 0.8 | 15 | 21 | 4 | 5.9 | 10900 | 8.4 |
JK110HS165-6004 | 1.8 | 165 | 6 | 0.9 | 14 | 24 | 4 | 6.6 | 12800 | 9.1 |
JK110HS201-8004 | 1.8 | 201 | 8 | 0.67 | 12 | 28 | 4 | 7.5 | 16200 | 11.8 |
Jkongmotor Nema 52 Stepper Motor Parameters:
Model No. | Operating Voltage | Rated Current | Resistance | Inductance | Holding Torque | Noload Frequency | Starting Frequency | Mass | Motor Length |
VDC | A | Ω | mH | N.m | No. | g.cm | Kg | mm | |
JK130HS173-6004 | 80~325 | 6 | 0.75 | 12.6 | 25 | 25000 | 2300 | 13.3 | 173 |
JK130HS229-6004 | 80~325 | 6 | 0.83 | 13.2 | 30 | 25000 | 2300 | 18 | 229 |
JK130HS257-7004 | 80~325 | 7 | 0.73 | 11.7 | 40 | 23000 | 2200 | 19 | 257 |
JK130HS285-7004 | 80~325 | 7 | 0.66 | 10 | 50 | 23000 | 2200 | 22.5 | 285 |
Stepping Motor Customized
Detailed Photos
Motor with Driver Closed Loop Stepper Motor
Easy Servo Stepper Motor Kits Geared Stepper Motor Linear Actuator Stepper Motor
Linear Screw Stepper Motor 3 / 4 Axis Cnc Stepper Motor Kits Hybrid Stepper Motor
Brushless DC Motor Brushed Dc Motor Coreless Dc Motor
Company Profile
HangZhou CHINAMFG Co., Ltd was a high technology industry zone in HangZhou, china. Our products used in many kinds of machines, such as 3d printer CNC machine, medical equipment, weaving printing equipments and so on.
JKONGMOTOR warmly welcome ‘OEM’ & ‘ODM’ cooperations and other companies to establish long-term cooperation with us.
Company spirit of sincere and good reputation, won the recognition and support of the broad masses of customers, at the same time with the domestic and foreign suppliers close community of interests, the company entered the stage of stage of benign development, laying a CHINAMFG foundation for the strategic goal of realizing only really the sustainable development of the company.
Equipments Show:
Production Flow:
Package:
Certification:
Application: | Printing Equipment |
---|---|
Speed: | Constant Speed |
Number of Stator: | Two-Phase |
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Can you recommend resources for further learning about the principles and applications of micro gear motors?
Yes, here are some recommended resources for further learning about the principles and applications of micro gear motors:
- Manufacturer Websites: Visit the websites of micro gear motor manufacturers. Many reputable manufacturers provide resources such as product datasheets, technical specifications, application notes, and white papers. These resources can offer valuable insights into the principles, design considerations, and specific applications of micro gear motors.
- Industry Publications and Journals: Subscribe to or explore industry publications and journals related to robotics, automation, or electromechanical systems. Examples include “IEEE Transactions on Robotics,” “Robotics and Automation Magazine,” or “Control Engineering.” These publications often feature articles, case studies, and research papers that delve into the principles, advancements, and real-world applications of micro gear motors.
- Books and Reference Materials: Look for books specifically dedicated to the principles and applications of micro gear motors. Some recommended titles include “Gearmotor Handbook” by Steve Antonich, “Handbook of Small Electric Motors” edited by William H. Yeadon, or “Mechatronics: Principles and Applications” by Godfrey C. Onwubolu. These resources provide comprehensive information, theories, and practical guidance on micro gear motors.
- Online Courses and Tutorials: Online learning platforms, such as Coursera, Udemy, or edX, offer courses on robotics, mechatronics, and motor control. These courses cover topics related to micro gear motors, including their principles, design, control, and applications. Completing these courses can provide in-depth knowledge and practical skills in working with micro gear motors.
- Technical Forums and Communities: Engage in technical forums and communities dedicated to robotics, motor control, or mechatronics. Websites like Stack Exchange (specifically the Robotics or Electrical Engineering sections), Reddit’s r/AskElectronics or r/robotics, or specialized forums like All About Circuits or Robotics Stack Exchange can be valuable platforms for asking questions, discussing principles, and learning from experts and enthusiasts in the field.
- Research Papers and Academic Publications: Explore academic databases such as IEEE Xplore, ScienceDirect, or Google Scholar to find research papers and academic publications related to micro gear motors. These papers provide in-depth analyses, experimental results, and theoretical discussions on various aspects of micro gear motors, including their principles, modeling, control algorithms, and emerging applications.
By utilizing these resources, individuals can gain a deeper understanding of the principles and applications of micro gear motors. It is recommended to combine multiple sources for a comprehensive and well-rounded learning experience.
What factors should be considered when selecting a micro gear motor for a particular application?
When selecting a micro gear motor for a particular application, several important factors should be taken into consideration. These factors help ensure that the chosen motor meets the specific requirements of the application and performs optimally. Here are the key factors to consider:
1. Torque Requirement:
Determine the torque requirements of the application. Consider both the maximum torque needed and the continuous torque required for sustained operation. Select a micro gear motor that can deliver the required torque output while considering factors such as load variations, start-up torque, and intermittent peak torque demands.
2. Speed Requirement:
Consider the desired speed range for the application. Determine the required output speed of the micro gear motor to ensure that it can meet the speed requirements of the specific task. It is important to select a motor with an appropriate gear ratio that can achieve the desired speed while considering the motor’s inherent speed limitations.
3. Power Supply:
Take into account the available power supply for the micro gear motor. Consider the voltage and current requirements of the motor and ensure compatibility with the available power source. Additionally, consider the power consumption and efficiency of the motor to optimize energy usage and minimize heat generation.
4. Physical Size and Mounting:
Consider the physical size and mounting requirements of the micro gear motor. Evaluate the available space for installation and ensure that the motor dimensions fit within the allotted space. Consider the mounting options, such as through-hole mounting, flange mounting, or custom mounting brackets, and choose a motor that can be easily integrated into the application.
5. Environmental Conditions:
Assess the environmental conditions in which the micro gear motor will operate. Consider factors such as temperature range, humidity, dust, vibration, and exposure to chemicals or corrosive substances. Select a motor that is designed to withstand and perform reliably under the specific environmental conditions of the application.
6. Expected Lifetime and Reliability:
Evaluate the expected lifetime and reliability requirements of the micro gear motor. Consider the duty cycle of the application, the expected operating hours, and the required maintenance intervals. Choose a motor with a reputation for reliability and durability to ensure long-term performance without frequent breakdowns or the need for premature replacements.
7. Control and Feedback:
Consider the control and feedback requirements of the micro gear motor. Determine if the application requires specific control interfaces, such as analog or digital signals, PWM control, or communication protocols like Modbus or CAN bus. Additionally, assess whether feedback mechanisms like encoders or sensors are necessary to provide accurate position or speed control.
8. Cost and Budget:
Evaluate the cost and budget constraints for the micro gear motor. Consider the overall cost of the motor, including the initial purchase price, installation costs, and any additional accessories or components required for proper operation. Balance the desired performance and features with the available budget to select a motor that provides the best value for the specific application.
9. Supplier and Support:
Consider the reputation and support provided by the micro gear motor supplier. Choose a reliable supplier with a track record of delivering quality products and excellent customer support. Ensure that the supplier offers technical assistance, documentation, and warranty coverage to address any potential issues or concerns that may arise during the motor’s lifespan.
By considering these factors, you can make an informed decision when selecting a micro gear motor for a particular application. It is essential to carefully evaluate the requirements and characteristics of the application to choose a motor that will meet performance expectations, ensure reliability, and provide optimal functionality.
What types of gears are typically employed in micro gear motors for efficient power transmission?
Micro gear motors utilize various types of gears to achieve efficient power transmission. Here are some commonly employed gear types in micro gear motors:
1. Spur Gears:
Spur gears are the most basic and commonly used gears in micro gear motors. They have straight teeth and are mounted on parallel shafts. Spur gears provide efficient power transmission with low noise and high efficiency. They are suitable for applications that require high-speed rotation and moderate torque requirements.
2. Helical Gears:
Helical gears are similar to spur gears but have angled teeth. The angled teeth allow for smoother and quieter operation compared to spur gears. Helical gears provide higher torque transmission capabilities and are commonly used in micro gear motors where reducing noise and vibration is important, such as in precision instruments or small appliances.
3. Planetary Gears:
Planetary gears, also known as epicyclic gears, are compact gear systems that consist of a central gear (sun gear), multiple surrounding gears (planet gears), and an outer ring gear (ring gear). Planetary gears offer high torque transmission capabilities in a compact design. They are commonly used in micro gear motors where a high gear ratio and torque multiplication are required, such as in robotics or automation systems.
4. Worm Gears:
Worm gears consist of a worm (a screw-like gear) and a mating gear called a worm wheel. Worm gears provide a high gear reduction ratio and are suitable for applications that require high torque output and low-speed rotation. They are commonly used in micro gear motors for applications such as valve actuators, conveyor systems, or precision positioning devices.
5. Bevel Gears:
Bevel gears have teeth that are cut on conical surfaces and are used to transmit power between intersecting shafts. They are commonly employed in micro gear motors that require changes in direction or angle of power transmission. Bevel gears provide efficient power transfer and can accommodate a wide range of speed and torque requirements.
6. Hypoid Gears:
Hypoid gears are similar to bevel gears but have offset axes. They are used in micro gear motors that require high torque transmission at right angles. Hypoid gears offer efficient power transmission with reduced noise and vibration, making them suitable for applications that require compact and quiet operation.
7. Rack and Pinion:
Rack and pinion gears consist of a linear gear (rack) meshing with a rotational gear (pinion). They are commonly used in micro gear motors for linear motion applications, such as in CNC machines, 3D printers, or small-scale automation systems. Rack and pinion gears provide efficient and precise linear motion control.
These are some of the common types of gears employed in micro gear motors for efficient power transmission. The choice of gear type depends on the specific requirements of the application, including torque, speed, noise level, and space constraints.
editor by CX 2023-11-27