Tag Archives: speed gear

China high quality 12V 24V 48V Variable Speed High Power Electric Car Brushless DC Planetary Gear Servo Motor for Micro Electric Pump Fan Chain Grinder vacuum pump and compressor

Product Description

 

Product Description

 

model Number of poles Phase Rated voltage Rated speed Continuous locked-rotor torque Rated torque Rated power Peak torque
Units     VDC RPM N.m N.m W N.m
42BYA075B030C-02 4 3 24 3000 0.192 0.16 50 0.48

 

model Peak current Torque constant Back EMF Motor length Motor length voltage range Range of rotation weight
Units A Nm/A V/KRPM g.cMoment of inertia mm VDC RPM Kg
42BYA075B030C-02 9.6 0.05 3.947 14.6 134 24~48 1000~3000 1.0 

Product Parameters

Quiet stable and reliable for long life operation

1.Voltage: 24 VDC
2.Number of phases: 3
3.Number of levels: 4
4.Line-to-line resistance: 1.45±10%ohms
5.Line-to-line inductance: 1.27±20%mH
6.Rated current: 3.2A
7.Rated power: 50W
8.No-load speed: 4300 rpm
9.Insulation class: B
10.Reduction ratio: 1:58.22
11.Output torque: 7.5 N.m
12.Output speed: 51.5 rpm
13.We can design the special voltage and shaft and so on

Jintian Imp. & Exp Co. Ltd opened in 2008 to facilitate international trade between China and the rest of the world. The young firm grew quickly, gaining a reputation for integrity, efficiency and astute knowledge of local market.

Throughout its 10 more years history, CHINAMFG has sought to connect customers with opportunities. While that purpose has remained unchanged, CHINAMFG has succeeded by positioning itself where the growth is and by aligning itself to the major economic trends of the time.

After being funded in ZheJiang , China to facilitate local and international trade, CHINAMFG expanded rapidly to capture the increasing flow of commerce between Asia, Europe and North America. Since then, CHINAMFG has continued to grow in line with changing trade patterns and developing markets, pioneering modern international trade practices in many countries. Built over 10 years, this global network is highly distinctive, difficult to replicate and ideally positioned for the world’s top trade corridors.

Our ability to connect customers remains absolutely central to the company’s strategy today, which aims to establish CHINAMFG as the world”s leading international trade company. Above all, we remain dedicated to the purpose that CHINAMFG was founded to serve: Connecting customers to opportunities, enabling businesses to CHINAMFG and economies to prosper, and helping people to fulfill their hopes and dreams.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Samples:
US$ 162/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

What role do materials play in the design and manufacturing of reliable micro gear motors?

Materials play a critical role in the design and manufacturing of reliable micro gear motors. Here’s how they contribute:

  • Gear Material: The choice of material for the gears is crucial for the overall performance and reliability of micro gear motors. Gears are subjected to high loads, friction, and wear during operation. Common materials used for gears include steel, stainless steel, brass, and various engineering plastics. The selected material should have high strength, good wear resistance, and low friction characteristics to ensure smooth and efficient power transmission, minimize gear failure, and prolong the motor’s lifespan.
  • Motor Housing: The material used for the motor housing affects its durability, thermal management, and protection against environmental factors. Common materials for motor housings include aluminum, stainless steel, and engineering plastics. The housing should provide structural integrity, efficient heat dissipation, and protection against dust, moisture, and other contaminants to maintain the motor’s reliability and performance in various operating conditions.
  • Bearing Materials: Bearings are essential components in micro gear motors as they reduce friction and enable smooth rotation of the motor shaft. The choice of bearing material is crucial for ensuring reliable and long-lasting operation. Common bearing materials include stainless steel, ceramics, and various self-lubricating materials. The selected material should have low friction, high load-bearing capacity, and resistance to wear and corrosion to minimize power losses, maintain efficiency, and extend the motor’s lifespan.
  • Magnetic Materials: In motors that utilize permanent magnets, such as brushless DC (BLDC) motors, the choice of magnetic material is crucial for generating and maintaining magnetic fields. Neodymium magnets are commonly used due to their high magnetic strength and energy efficiency. The quality and characteristics of the magnetic material directly impact the motor’s performance, torque output, and overall efficiency.
  • Electrical Insulation: Micro gear motors often involve the flow of electrical current through the motor windings. Insulation materials, such as enamel or varnish, are used to electrically isolate the windings and prevent short circuits. The selected insulation material should have high dielectric strength, good thermal stability, and resistance to environmental factors to ensure reliable electrical insulation and prevent motor failures.

By carefully selecting appropriate materials for gears, motor housing, bearings, magnetic components, and electrical insulation, designers and manufacturers can optimize the reliability, efficiency, and performance of micro gear motors. The materials should be chosen based on the specific requirements of the application, considering factors such as load capacity, operating conditions, environmental factors, and cost-effectiveness.

brushless motor

Can you provide examples of innovative uses of micro gear motors in modern technology?

Micro gear motors have found innovative applications across various modern technologies. Here are some examples:

  • Drones: Micro gear motors are commonly used in drones to drive the propellers and control the flight. Their compact size, lightweight design, and precise control capabilities make them ideal for achieving stable and agile flight maneuvers.
  • Robotics: Micro gear motors play a crucial role in robotics, powering the joints and actuators of robotic arms, grippers, and humanoid robots. Their precise control, compact form factor, and high torque-to-size ratio enable robots to perform delicate and precise manipulations in industrial automation, medical procedures, and research applications.
  • Automotive Systems: Micro gear motors are used in various automotive systems, such as power windows, door locks, and seat adjustments. Their small size and high torque allow for efficient and reliable operation of these mechanisms within the limited space available in vehicles.
  • Medical Devices: Micro gear motors are utilized in medical devices and equipment, including surgical robots, prosthetics, insulin pumps, and lab automation systems. Their precise control, compact size, and low power consumption make them suitable for applications requiring fine movements, accurate dosing, and miniaturization.
  • Consumer Electronics: Micro gear motors are incorporated into numerous consumer electronic devices. They can be found in cameras for lens movement and autofocus, wearable devices for haptic feedback and vibration, and home appliances for precise control of valves, fans, and robotic components.
  • Smart Home Systems: Micro gear motors are employed in smart home systems to control various functions, such as motorized curtains, blinds, and awnings. Their precise control, quiet operation, and compatibility with automation systems allow for convenient and customizable control of these home features.

These examples represent just a few of the many innovative uses of micro gear motors in modern technology. Their versatility, precision, and compact design make them valuable components in a wide range of applications, contributing to advancements in automation, robotics, electronics, and beyond.

brushless motor

In which applications are micro gear motors commonly used due to their compact size?

Micro gear motors find applications in various industries where their compact size is advantageous. Here are some common applications where micro gear motors are commonly used:

1. Micro Robotics:

Micro gear motors are extensively used in micro robotics applications. These motors provide the necessary torque and precision for controlling the movements of miniature robot platforms, robotic arms, grippers, and other robotic components. Their small size allows for intricate and precise motion control in confined spaces.

2. Medical Devices:

In the medical field, micro gear motors are employed in various devices and equipment, including medical robots, surgical instruments, diagnostic devices, and drug delivery systems. Their compact size enables integration into portable and handheld medical devices while ensuring precise and controlled movements for accurate diagnostics and minimally invasive procedures.

3. Automotive Systems:

Micro gear motors are used in automotive systems that require compact and lightweight actuators. They find applications in power windows, door locks, seat adjustment mechanisms, mirror adjustment, and HVAC controls. The small size of micro gear motors allows for efficient utilization of space within the vehicle while providing reliable and precise operation.

4. Consumer Electronics:

Micro gear motors are found in various consumer electronic devices. They are used in camera autofocus mechanisms, zoom controls, robotic toys, smart home devices, and wearable technology. The compact size of micro gear motors enables seamless integration into these devices, providing precise and controlled motion capabilities.

5. Industrial Automation:

In industrial automation applications, micro gear motors are utilized in small-scale machinery, robotics, and automated systems. They are used in conveyor systems, pick-and-place machines, miniature actuators, and precision positioning systems. The small size and high gearing ratio of micro gear motors allow for accurate and repeatable positioning in tight spaces.

6. Aerospace and Defense:

Micro gear motors are employed in aerospace and defense applications, including drones, unmanned aerial vehicles (UAVs), miniature satellites, and guidance systems. Their compact size and lightweight properties are crucial for reducing the overall weight and improving maneuverability in these applications.

7. Scientific and Laboratory Equipment:

Micro gear motors are used in scientific instruments, laboratory equipment, and research devices. They find applications in precision syringe pumps, sample handling systems, microfluidic devices, and motion control mechanisms for optical instruments. The compact size and precise motion control capabilities of micro gear motors support accurate and controlled experimentation and analysis.

8. Industrial and Manufacturing:

In industrial and manufacturing settings, micro gear motors are utilized in small-scale machinery, conveyors, packaging equipment, and assembly systems. They provide compact and efficient motion control for precise material handling, part positioning, and automation processes.

These are just a few examples of the many applications where micro gear motors are commonly used due to their compact size. Their small form factor and precise motion control capabilities make them ideal for applications where space constraints, weight reduction, and accurate motion control are crucial factors.

China high quality 12V 24V 48V Variable Speed High Power Electric Car Brushless DC Planetary Gear Servo Motor for Micro Electric Pump Fan Chain Grinder   vacuum pump and compressor	China high quality 12V 24V 48V Variable Speed High Power Electric Car Brushless DC Planetary Gear Servo Motor for Micro Electric Pump Fan Chain Grinder   vacuum pump and compressor
editor by CX 2024-05-17

China Professional Combination Gear Motor with Parallel Shaft F Type and Coaxial R Type Connect to a Variable Speed Motor vacuum pump ac

Product Description

Parallel Shaft Helical Bevel Gear Motor (F Type) 

Input Configurations

 Motor mounted
IEC B5/B14 Motor Flange (AM Flange)
Servo Motor Flange (AQA Flange) 
Shaft Input (AD connection)

Output Configurations

 

CHINAMFG output shaft

CHINAMFG output shaft with flange

Hollow output shaft

Hollow output shaft and flange

Variants of the Parallel Shaft Helical Gear Unit Series F / FF / FA / FAF

Foot- or flange-mounted

B5 or B14 flange-mounted

CHINAMFG shaft or hollow shaft

Hollow shaft with key connection, shrink disk, splined hollow shaft, or Torque Arm

Main Feature
Slim design for limited installation space without having to compromise on the performance, And what applies to many of our gear units: longer operating lives  and wear-free gearing with a high fatigue strength.
Specification

Model

Shaft Dia.

mm

Horizontal Center Height

mm

External Flange Dia.

Mm

Power

Kw

Ratio

i

Nominal Torque

Nm

CHINAMFG Shaft

Hollow Shaft

F/FF/FA/FAF37

ф25

ф30

70

160

0.12-3

4-138

180

F/FF/FA/FAF47

ф35

ф35

80

200

0.12-5.5

4-175

360

F/FF/FA/FAF57

ф35

ф40

100

250

0.18-7.5

4-197

420

F/FF/FA/FAF67

ф40

ф40

100

250

0.37-7.5

4-197

700

F/FF/FA/FAF77

ф50

ф50

120

300

0.75-11

4-197

1350

F/FF/FA/FAF87

ф60

ф60

155

350

1.5-22

4-193

2500

F/FF/FA/FAF97

ф70

ф70

180

450

2.2-30

4-203

3700

F/FF/FA/FAF107

ф90

ф90

200

450

3-45

4-205

6500

F/FF/FA/FAF127

ф110

ф100

240

550

5.5-90

4-202

10000

F/FF/FA/FAF157

ф120

ф120

270

660

11-160

4-190

18000

Company Profile
Packing
Scenarioes

FAQ
Q1: I want to buy your products, how can I pay?
A: You can pay via T/T(30%+70%), L/C ,D/P etc. 

Q2: How can you guarantee the quality?
A: One year’s warranty against B/L date. If you meet with quality problem, please send us pictures or video to check, we promise to send spare parts or new products to replace. Our guarantee not include inappropriate operation or wrong specification selection. 

Q3: How we select models and specifications?
A: You can email us the series code (for example: RC series helical gearbox) as well as requirement details, such as motor power,output speed or ratio, service factor or your application…as much data as possible. If you can supply some pictures or drawings,it is nice. 

Q4: If we don’t find what we want on your website, what should we do?
A: We offer 3 options:
1, You can email us the pictures, drawings or descriptions details. We will try to design your products on the basis of our
standard models.
2, Our R&D department is professional for OEM/ODM products by drawing/samples, you can send us samples, we do customized design for your bulk purchasing.
3, We can develop new products if they have good market. We have already developed many items for special using successful, such as special gearbox for agitator, cement conveyor, shoes machines and so on. 

Q5: Can we buy 1 pc of each item for quality testing?
A: Yes, we are glad to accept trial order for quality testing.

Q6: How about your product delivery time?
A: Normally for 20’container, it takes 25-30 workdays for RV series worm gearbox, 35-40 workdays for helical gearmotors.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: Foot/Flange Mounted
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Double-Step
Customization:
Available

|

gear motor

Where can individuals find reliable resources for learning more about gear motors and their applications?

Individuals seeking to learn more about gear motors and their applications have access to various reliable resources that provide valuable information and insights. Here are some sources where individuals can find reliable information about gear motors:

1. Manufacturer Websites:

Manufacturer websites are a primary source of information about gear motors. Gear motor manufacturers often provide detailed product specifications, application guides, technical documentation, and educational materials on their websites. These resources offer insights into different gear motor types, features, performance characteristics, and application considerations. Manufacturer websites are a reliable and convenient starting point for learning about gear motors.

2. Industry Associations and Organizations:

Industry associations and organizations related to mechanical engineering, automation, and motion control often have resources and publications dedicated to gear motors. These organizations provide technical articles, whitepapers, industry standards, and guidelines related to gear motor design, selection, and application. Examples of such associations include the American Gear Manufacturers Association (AGMA), International Electrotechnical Commission (IEC), and Institute of Electrical and Electronics Engineers (IEEE).

3. Technical Publications and Journals:

Technical publications and journals focused on engineering, robotics, and motion control are valuable sources of in-depth knowledge about gear motors. Publications like IEEE Transactions on Industrial Electronics, Mechanical Engineering magazine, or Motion System Design magazine often feature articles, case studies, and research papers on gear motor technology, advancements, and applications. These publications provide authoritative and up-to-date information from industry experts and researchers.

4. Online Forums and Communities:

Online forums and communities dedicated to engineering, robotics, and automation can be excellent resources for discussions, insights, and practical experiences related to gear motors. Websites like Stack Exchange, engineering-focused subreddits, or specialized forums provide platforms for individuals to ask questions, share knowledge, and engage in discussions with professionals and enthusiasts in the field. Participating in these communities allows individuals to learn from real-world experiences and gain practical insights.

5. Educational Institutions and Courses:

Technical colleges, universities, and vocational training centers often offer courses or programs in mechanical engineering, mechatronics, or automation that cover gear motor fundamentals and applications. These educational institutions provide comprehensive curricula, textbooks, and lecture materials that can serve as reliable resources for individuals interested in learning about gear motors. Additionally, online learning platforms like Coursera, Udemy, or LinkedIn Learning offer courses on topics related to gear motors and motion control.

6. Trade Shows and Exhibitions:

Attending trade shows, exhibitions, and industry conferences related to automation, robotics, or motion control provides opportunities to learn about the latest advancements in gear motor technology. These events often feature product demonstrations, technical presentations, and expert panels where individuals can interact with gear motor manufacturers, industry experts, and other professionals. It’s a great way to stay updated on the latest trends, innovations, and applications of gear motors.

When seeking reliable resources, it’s important to consider the credibility of the source, the expertise of the authors, and the relevance to the specific area of interest. By leveraging these resources, individuals can gain a comprehensive understanding of gear motors and their applications, from basic principles to advanced topics, enabling them to make informed decisions and effectively utilize gear motors in their projects or applications.

gear motor

Can you explain the role of backlash in gear motors and how it’s managed in design?

Backlash plays a significant role in gear motors and is an important consideration in their design and operation. Backlash refers to the slight clearance or play between the teeth of gears in a gear system. It affects the precision, accuracy, and responsiveness of the gear motor. Here’s an explanation of the role of backlash in gear motors and how it is managed in design:

1. Role of Backlash:

Backlash in gear motors can have both positive and negative effects:

  • Compensation for Misalignment: Backlash can help compensate for minor misalignments between gears, shafts, or the load. It allows a small amount of movement before engaging the next set of teeth, reducing the risk of damage due to misalignment. This can be particularly beneficial in applications where precise alignment is challenging or subject to variations.
  • Negative Impact on Accuracy and Responsiveness: Backlash can introduce a delay or “dead zone” in the motion transmission. When changing the direction of rotation or reversing the load, the gear teeth must first overcome the clearance or play before engaging in the opposite direction. This delay can reduce the overall accuracy, responsiveness, and repeatability of the gear motor, especially in applications that require precise positioning or rapid changes in direction or speed.

2. Managing Backlash in Design:

Designers employ various techniques to manage and minimize backlash in gear motors:

  • Tight Manufacturing Tolerances: Proper manufacturing techniques and tight tolerances can help minimize backlash. Precision machining and quality control during the production of gears and gear components ensure closer tolerances, reducing the amount of play between gear teeth.
  • Preload or Pre-tensioning: Applying a preload or pre-tensioning force to the gear system can help reduce backlash. This technique involves introducing an initial force or tension that eliminates the clearance between gear teeth. It ensures immediate contact and engagement of the gear teeth, minimizing the dead zone and improving the overall responsiveness and accuracy of the gear motor.
  • Anti-Backlash Gears: Anti-backlash gears are designed specifically to minimize or eliminate backlash. They typically feature modifications to the gear tooth profile, such as modified tooth shapes or special tooth arrangements, to reduce clearance. Anti-backlash gears can be used in gear motor designs to improve precision and minimize the effects of backlash.
  • Backlash Compensation: In some cases, backlash compensation techniques can be employed. These techniques involve monitoring the position or movement of the load and applying control algorithms to compensate for the backlash. By accounting for the clearance and adjusting the control signals accordingly, the effects of backlash can be mitigated, improving accuracy and responsiveness.

3. Application-Specific Considerations:

The management of backlash in gear motors should be tailored to the specific application requirements:

  • Positioning Accuracy: Applications that require precise positioning, such as robotics or CNC machines, may require tighter backlash control to ensure accurate and repeatable movements.
  • Dynamic Response: Applications that involve rapid changes in direction or speed, such as high-speed automation or servo control systems, may require reduced backlash to maintain responsiveness and minimize overshoot or lag.
  • Load Characteristics: The nature of the load and its impact on the gear system should be considered. Heavy loads or applications with significant inertial forces may require additional backlash management techniques to maintain stability and accuracy.

In summary, backlash in gear motors can affect precision, accuracy, and responsiveness. While it can compensate for misalignments, backlash may introduce delays and reduce the overall performance of the gear motor. Designers manage backlash through tight manufacturing tolerances, preload techniques, anti-backlash gears, and backlash compensation methods. The management of backlash depends on the specific application requirements, considering factors such as positioning accuracy, dynamic response, and load characteristics.

gear motor

Can you explain the advantages of using gear motors in various mechanical systems?

Gear motors offer several advantages when utilized in various mechanical systems. Their unique characteristics make them well-suited for applications that require controlled power transmission, precise speed control, and torque amplification. Here’s a detailed explanation of the advantages of using gear motors:

1. Torque Amplification:

One of the key advantages of gear motors is their ability to amplify torque. By using different gear ratios, gear motors can increase or decrease the output torque from the motor. This torque amplification is crucial in applications that require high torque output, such as lifting heavy loads or operating machinery with high resistance. Gear motors allow for efficient power transmission, enabling the system to handle demanding tasks effectively.

2. Speed Control:

Gear motors provide precise speed control, allowing for accurate and controlled movement in mechanical systems. By selecting the appropriate gear ratio, the rotational speed of the output shaft can be adjusted to match the requirements of the application. This speed control capability ensures that the mechanical system operates at the desired speed, whether it needs to be fast or slow. Gear motors are commonly used in applications such as conveyors, robotics, and automated machinery, where precise speed control is essential.

3. Directional Control:

Another advantage of gear motors is their ability to control the rotational direction of the output shaft. By using different types of gears, such as spur gears, bevel gears, or worm gears, the direction of rotation can be easily changed. This directional control is beneficial in applications that require bidirectional movement, such as in actuators, robotic arms, and conveyors. Gear motors offer reliable and efficient directional control, contributing to the versatility and functionality of mechanical systems.

4. Efficiency and Power Transmission:

Gear motors are known for their high efficiency in power transmission. The gear system helps distribute the load across multiple gears, reducing the strain on individual components and minimizing power losses. This efficient power transmission ensures that the mechanical system operates with optimal energy utilization and minimizes wasted power. Gear motors are designed to provide reliable and consistent power transmission, resulting in improved overall system efficiency.

5. Compact and Space-Saving Design:

Gear motors are compact in size and offer a space-saving solution for mechanical systems. By integrating the motor and gear system into a single unit, gear motors eliminate the need for additional components and reduce the overall footprint of the system. This compact design is especially beneficial in applications with limited space constraints, allowing for more efficient use of available space while still delivering the necessary power and functionality.

6. Durability and Reliability:

Gear motors are designed to be robust and durable, capable of withstanding demanding operating conditions. The gear system helps distribute the load, reducing the stress on individual gears and increasing overall durability. Additionally, gear motors are often constructed with high-quality materials and undergo rigorous testing to ensure reliability and longevity. This makes gear motors well-suited for continuous operation in industrial and commercial applications, where reliability is crucial.

By leveraging the advantages of torque amplification, speed control, directional control, efficiency, compact design, durability, and reliability, gear motors provide a reliable and efficient solution for various mechanical systems. They are widely used in industries such as robotics, automation, manufacturing, automotive, and many others, where precise and controlled mechanical power transmission is essential.

China Professional Combination Gear Motor with Parallel Shaft F Type and Coaxial R Type Connect to a Variable Speed Motor   vacuum pump acChina Professional Combination Gear Motor with Parallel Shaft F Type and Coaxial R Type Connect to a Variable Speed Motor   vacuum pump ac
editor by CX 2024-05-16

China factory 12V High Speed Micro Hydraulic Motor Planetary Gearbox 49mm DC Gear Motor vacuum pump belt

Product Description

12v High Speed Micro Hydraulic Motor Planetary Gearbox  49mm Dc Gear Motor

1)Product Description:
    
1°size:Diameter 49mm 
    2°lifespan:5000 hours 
    3°gear material: plastic or brass
    4°IP rate:IP54

 

 

 

 

2)Complete Specification:

3)Motor Drawing:

Shaft drawing:

 

   

4)Application:

 

 welding machine, electrical household, CHINAMFG machinery, office intelligent equipment, hotel leisure, antomated machine and so on.

Motor Voltage: DC12V, 24V,42V,48V,90V,110V ,300V

Motor Rated Power:15W, 25W,30W,45W,65W, 95W,120W,150W,180W

Motor no-load Speed:15RPM, 30RPM,60RPM,80RM,120RPM,150RPM,180RPM,200RPM,220RPM.

5)Factory show:

Transfer way:

 

7)RFQ:

Q: Are you trading company or manufacturer ?

A: We are Integration of industry and trade, with over 20 years experience in DC worm gear motor. Our company have accumulated skilled production line, complete management and powerful research support, which could match all of the customers’ requirements and make them satisfaction.
 

Q: What is your main product?

DC Motor: Gear motor, Square motor, Stepped motor, and Micro motor
-Welding equipment: Wire feeder, Welding rod, Welding Torch, Earth clamp, Electrode holder, and Rectifier
 

Q: What if I don’t know which DC motor I need?

A: Don’t worry, Send as much information as you can, our team will help you find the right 1 you are looking for.
 

Q: What is your terms of payment ?

A: Payment=1000USD, 30% T/T in advance ,balance before shippment.
If you have another question, pls feel free to contact us as below:
 

Q: How to delivery:

A: By sea – Buyer appoint forwarder, or our sales team find suitable forwarder for buyers. 

By air – Buyer offer collect express account, or our sales team find suitable express for buyers. (Mostly for sample)
Others – Actually,samples send by DHL,UPS, TNT and Fedex etc. We arrange to delivery goods to some place from China appointed by buyers.

Q: How long is your delivery time?
A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Constant Speed
Excitation Mode: Excited
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

Where can individuals find reputable suppliers or manufacturers of micro gear motors?

Individuals looking for reputable suppliers or manufacturers of micro gear motors can consider the following reliable sources:

  • Online Directories: Online directories, such as Thomasnet, Alibaba, or GlobalSpec, provide comprehensive listings of suppliers and manufacturers across various industries. These directories often include detailed profiles, product catalogs, and customer reviews, making it easier to evaluate and connect with reputable micro gear motor suppliers.
  • Trade Shows and Exhibitions: Attending industry-specific trade shows and exhibitions offers an excellent opportunity to meet and connect with reputable micro gear motor manufacturers and suppliers. These events gather industry professionals, showcase the latest technologies, and provide a platform for networking and establishing business relationships.
  • Industry Associations: Industry associations, such as the Robotics Industries Association (RIA) or the National Electrical Manufacturers Association (NEMA), can provide valuable resources and directories of reputable micro gear motor manufacturers and suppliers. These associations often have strict membership criteria, ensuring that listed companies adhere to industry standards and best practices.
  • Referrals and Recommendations: Seek referrals or recommendations from colleagues, industry experts, or professionals who have experience working with micro gear motors. Their firsthand experiences can provide insights into reputable manufacturers or suppliers known for their quality products, reliable services, and customer support.
  • Online Research and Reviews: Conducting online research allows individuals to explore various manufacturers or suppliers of micro gear motors. Look for websites, online forums, or discussion boards that provide reviews, ratings, or testimonials from customers. Reading unbiased experiences and feedback can help identify reputable companies that consistently deliver high-quality products and excellent customer service.
  • Consulting with Industry Experts: Seek advice from industry experts, engineers, or consultants who specialize in micro gear motors. They often have extensive knowledge of the market, industry trends, and reputable manufacturers or suppliers. Consulting with experts can provide valuable insights and guidance in selecting the right supplier for specific requirements.

It is important to conduct due diligence when evaluating suppliers or manufacturers. Consider factors such as their reputation, years of experience in the industry, product quality, certifications, customer support, and delivery capabilities. Request samples, specifications, or references to assess their suitability for the intended application.

By utilizing these sources and conducting thorough research, individuals can find reputable suppliers or manufacturers of micro gear motors that meet their specific needs and ensure reliable and high-quality products.

brushless motor

What challenges or limitations might be associated with the use of micro gear motors?

Micro gear motors, despite their many advantages, also come with certain challenges and limitations. Here are some of them:

  • Size and Space Constraints: Micro gear motors are designed to be compact and small in size, which can be advantageous in many applications. However, the small size can also limit the power output and torque capabilities of the motor, making them unsuitable for applications that require high power or high torque.
  • Heat Dissipation: Micro gear motors can generate heat during operation, especially when subjected to high loads or continuous use. The compact size and limited surface area of the motor can make heat dissipation challenging, potentially leading to overheating and reduced performance or lifespan. Proper heat dissipation strategies such as cooling fans or heat sinks may be required in certain applications.
  • Noise and Vibration: Due to the mechanical nature of gear systems, micro gear motors can produce noise and vibration during operation. The noise and vibration levels can vary depending on the quality of the gears and the design of the motor. In applications where noise or vibration is a concern, additional measures such as noise-reducing enclosures or vibration dampening techniques may be necessary.
  • Limited Lifespan: Micro gear motors, like any mechanical system, have a limited lifespan. The continuous operation, high loads, and friction within the gear system can contribute to wear and tear over time. Regular maintenance, lubrication, and periodic replacement of worn-out components may be required to ensure optimal performance and longevity.
  • Cost: Micro gear motors, especially those with advanced features or high precision, can be relatively expensive compared to other motor types. The cost of manufacturing, materials, and specialized components can contribute to the overall cost. Additionally, the need for additional accessories such as controllers or drivers may further increase the cost of implementing micro gear motors in certain applications.

Despite these challenges and limitations, micro gear motors offer unique advantages and are suitable for a wide range of applications. Understanding the specific requirements and limitations of the motor can help in selecting the appropriate type and optimizing its performance in a given application.

brushless motor

In which applications are micro gear motors commonly used due to their compact size?

Micro gear motors find applications in various industries where their compact size is advantageous. Here are some common applications where micro gear motors are commonly used:

1. Micro Robotics:

Micro gear motors are extensively used in micro robotics applications. These motors provide the necessary torque and precision for controlling the movements of miniature robot platforms, robotic arms, grippers, and other robotic components. Their small size allows for intricate and precise motion control in confined spaces.

2. Medical Devices:

In the medical field, micro gear motors are employed in various devices and equipment, including medical robots, surgical instruments, diagnostic devices, and drug delivery systems. Their compact size enables integration into portable and handheld medical devices while ensuring precise and controlled movements for accurate diagnostics and minimally invasive procedures.

3. Automotive Systems:

Micro gear motors are used in automotive systems that require compact and lightweight actuators. They find applications in power windows, door locks, seat adjustment mechanisms, mirror adjustment, and HVAC controls. The small size of micro gear motors allows for efficient utilization of space within the vehicle while providing reliable and precise operation.

4. Consumer Electronics:

Micro gear motors are found in various consumer electronic devices. They are used in camera autofocus mechanisms, zoom controls, robotic toys, smart home devices, and wearable technology. The compact size of micro gear motors enables seamless integration into these devices, providing precise and controlled motion capabilities.

5. Industrial Automation:

In industrial automation applications, micro gear motors are utilized in small-scale machinery, robotics, and automated systems. They are used in conveyor systems, pick-and-place machines, miniature actuators, and precision positioning systems. The small size and high gearing ratio of micro gear motors allow for accurate and repeatable positioning in tight spaces.

6. Aerospace and Defense:

Micro gear motors are employed in aerospace and defense applications, including drones, unmanned aerial vehicles (UAVs), miniature satellites, and guidance systems. Their compact size and lightweight properties are crucial for reducing the overall weight and improving maneuverability in these applications.

7. Scientific and Laboratory Equipment:

Micro gear motors are used in scientific instruments, laboratory equipment, and research devices. They find applications in precision syringe pumps, sample handling systems, microfluidic devices, and motion control mechanisms for optical instruments. The compact size and precise motion control capabilities of micro gear motors support accurate and controlled experimentation and analysis.

8. Industrial and Manufacturing:

In industrial and manufacturing settings, micro gear motors are utilized in small-scale machinery, conveyors, packaging equipment, and assembly systems. They provide compact and efficient motion control for precise material handling, part positioning, and automation processes.

These are just a few examples of the many applications where micro gear motors are commonly used due to their compact size. Their small form factor and precise motion control capabilities make them ideal for applications where space constraints, weight reduction, and accurate motion control are crucial factors.

China factory 12V High Speed Micro Hydraulic Motor Planetary Gearbox 49mm DC Gear Motor   vacuum pump belt	China factory 12V High Speed Micro Hydraulic Motor Planetary Gearbox 49mm DC Gear Motor   vacuum pump belt
editor by CX 2024-05-16

China Professional CHINAMFG Brand Single Phase Electric Speed Gear Reducer Motor 220V 900 Rpm 6 Pole vacuum pump connector

Product Description

Product Description

There are many types of worm gearboxes. If you have any questions about the selection, please contact us first.

Band name

Topper 

Model No.:

NMRV571, NMRV030, NMRV040, NMRV050, NMRV063, NMRV075, NMRV090, NMRV110, NMRV130, NMRV150

Ratio:

5,7.5,10,15,20,25,30,40,50,

Color:

Blue/Silver Grey Or On Customer Request

Material:

Housing: Size 25-110 Is Aluminum Alloy, Size 110-150 Is Cast-Iron

Worm Wheel: ZCuSn10Pb1

Worm:20Cr

Pinion:Tin Bronze

Output Shaft: Steel-45#

Matching motor

60~1500W

Usages:

Industrial Machine: Food Stuff, Ceramics, Chemical, Packing, Dyeing,Wood working, Glass.

IEC Flange:

IEC Standard Flange Or On Customer Request

 

Detailed Photos

FAQ

1.Q:What information should i tell you to confirm the worm gearbox?
A:Model/Size,B:Ratio and output torque, C:Power and flange type,D:Shaft Direction,E:Housing color,F:Order quantity.

2.What type of payment methods do you accept?
A:T/T,B:B/L,C:CASH,etc 

3.What’s your warranty?
One year.

4.How to delivery?
A:By sea- Buyer appoints forwarder,or our sales team finds suitable forwarder for buyers.By air- Buyer offers collect express account,or our sales team fingds suitable express for buyers.(Mostly for sample) Other- We arrange to delivery goods to some place in China appointed by buyers.

5.Can you make OEM/ODM order?
Yes,we have rich experience on OEM/ODM order and like CHINAMFG Non-disclosure Agreement before sample making;

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: 90 Degree
Layout: Coaxial
Gear Shape: Worm Gear
Step: Double-Step
Samples:
US$ 452/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

Are there innovations or emerging technologies in the field of gear motor design?

Yes, there are several innovations and emerging technologies in the field of gear motor design. These advancements aim to improve the performance, efficiency, compactness, and reliability of gear motors. Here are some notable innovations and emerging technologies in gear motor design:

1. Miniaturization and Compact Design:

Advancements in manufacturing techniques and materials have enabled the miniaturization of gear motors without compromising their performance. Gear motors with compact designs are highly sought after in applications where space is limited, such as robotics, medical devices, and consumer electronics. Innovative approaches like micro-gear motors and integrated motor-gear units are being developed to achieve smaller form factors while maintaining high torque and efficiency.

2. High-Efficiency Gearing:

New gear designs focus on improving efficiency by reducing friction and mechanical losses. Advanced gear manufacturing techniques, such as precision machining and 3D printing, allow for the creation of intricate gear tooth profiles that optimize power transmission and minimize losses. Additionally, the use of high-performance materials, coatings, and lubricants helps reduce friction and wear, improving overall gear motor efficiency.

3. Magnetic Gearing:

Magnetic gearing is an emerging technology that replaces traditional mechanical gears with magnetic fields to transmit torque. It utilizes the interaction of permanent magnets to transfer power, eliminating the need for physical gear meshing. Magnetic gearing offers advantages such as high efficiency, low noise, compactness, and maintenance-free operation. While still being developed and refined, magnetic gearing holds promise for various applications, including gear motors.

4. Integrated Electronics and Controls:

Gear motor designs are incorporating integrated electronics and controls to enhance performance and functionality. Integrated motor drives and controllers simplify system integration, reduce wiring complexity, and allow for advanced control features. These integrated solutions offer precise speed and torque control, intelligent feedback mechanisms, and connectivity options for seamless integration into automation systems and IoT (Internet of Things) platforms.

5. Smart and Condition Monitoring Capabilities:

New gear motor designs incorporate smart features and condition monitoring capabilities to enable predictive maintenance and optimize performance. Integrated sensors and monitoring systems can detect abnormal operating conditions, track performance parameters, and provide real-time feedback for proactive maintenance and troubleshooting. This helps prevent unexpected failures, extend the lifespan of gear motors, and improve overall system reliability.

6. Energy-Efficient Motor Technologies:

Gear motor design is influenced by advancements in energy-efficient motor technologies. Brushless DC (BLDC) motors and synchronous reluctance motors (SynRM) are gaining popularity due to their higher efficiency, better power density, and improved controllability compared to traditional brushed DC and induction motors. These motor technologies, when combined with optimized gear designs, contribute to overall system energy savings and performance improvements.

These are just a few examples of the innovations and emerging technologies in gear motor design. The field is continuously evolving, driven by the need for more efficient, compact, and reliable motion control solutions in various industries. Gear motor manufacturers and researchers are actively exploring new materials, manufacturing techniques, control strategies, and system integration approaches to meet the evolving demands of modern applications.

gear motor

How do gear motors compare to other types of motors in terms of power and efficiency?

Gear motors can be compared to other types of motors in terms of power output and efficiency. The choice of motor type depends on the specific application requirements, including the desired power level, efficiency, speed range, torque characteristics, and control capabilities. Here’s a detailed explanation of how gear motors compare to other types of motors in terms of power and efficiency:

1. Gear Motors:

Gear motors combine a motor with a gear mechanism to deliver increased torque output and improved control. The gear reduction enables gear motors to provide higher torque while reducing the output speed. This makes gear motors suitable for applications that require high torque, precise positioning, and controlled movements. However, the gear reduction process introduces mechanical losses, which can slightly reduce the overall efficiency of the system compared to direct-drive motors. The efficiency of gear motors can vary depending on factors such as gear quality, lubrication, and maintenance.

2. Direct-Drive Motors:

Direct-drive motors, also known as gearless or integrated motors, do not use a gear mechanism. They provide a direct connection between the motor and the load, eliminating the need for gear reduction. Direct-drive motors offer advantages such as high efficiency, low maintenance, and compact design. Since there are no gears involved, direct-drive motors experience fewer mechanical losses and can achieve higher overall efficiency compared to gear motors. However, direct-drive motors may have limitations in terms of torque output and speed range, and they may require more complex control systems to achieve precise positioning.

3. Stepper Motors:

Stepper motors are a type of gear motor that excels in precise positioning applications. They operate by converting electrical pulses into incremental steps of movement. Stepper motors offer excellent positional accuracy and control. They are capable of precise positioning and can hold a position without power. Stepper motors have relatively high torque at low speeds, making them suitable for applications that require precise control and positioning, such as robotics, 3D printers, and CNC machines. However, stepper motors may have lower overall efficiency compared to direct-drive motors due to the additional power required to overcome the detents between steps.

4. Servo Motors:

Servo motors are another type of gear motor known for their high torque, high speed, and excellent positional accuracy. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer precise control over position, speed, and torque. Servo motors are widely used in applications that require accurate and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems. Servo motors can achieve high efficiency when properly optimized and controlled but may have slightly lower efficiency compared to direct-drive motors due to the additional complexity of the control system.

5. Efficiency Considerations:

When comparing power and efficiency among different motor types, it’s important to consider the specific requirements and operating conditions of the application. Factors such as load characteristics, speed range, duty cycle, and control requirements influence the overall efficiency of the motor system. While direct-drive motors generally offer higher efficiency due to the absence of mechanical losses from gears, gear motors can deliver higher torque output and enhanced control capabilities. The efficiency of gear motors can be optimized through proper gear selection, lubrication, and maintenance practices.

In summary, gear motors offer increased torque and improved control compared to direct-drive motors. However, gear reduction introduces mechanical losses that can slightly impact the overall efficiency of the system. Direct-drive motors, on the other hand, provide high efficiency and compact design but may have limitations in terms of torque and speed range. Stepper motors and servo motors, both types of gear motors, excel in precise positioning applications but may have slightly lower efficiency compared to direct-drive motors. The selection of the most suitable motor type depends on the specific requirements of the application, balancing power, efficiency, speed range, and control capabilities.

gear motor

How does the gearing mechanism in a gear motor contribute to torque and speed control?

The gearing mechanism in a gear motor plays a crucial role in controlling torque and speed. By utilizing different gear ratios and configurations, the gearing mechanism allows for precise manipulation of these parameters. Here’s a detailed explanation of how the gearing mechanism contributes to torque and speed control in a gear motor:

The gearing mechanism consists of multiple gears with varying sizes, tooth configurations, and arrangements. Each gear in the system engages with another gear, creating a mechanical connection. When the motor rotates, it drives the rotation of the first gear, which then transfers the motion to subsequent gears, ultimately resulting in the output shaft’s rotation.

Torque Control:

The gearing mechanism in a gear motor enables torque control through the principle of mechanical advantage. The gear system utilizes gears with different numbers of teeth, known as gear ratio, to adjust the torque output. When a smaller gear (pinion) engages with a larger gear (gear), the pinion rotates faster than the gear but exerts more force or torque. This results in torque amplification, allowing the gear motor to deliver higher torque at the output shaft while reducing the rotational speed. Conversely, if a larger gear engages with a smaller gear, torque reduction occurs, resulting in higher rotational speed at the output shaft.

By selecting the appropriate gear ratio, the gearing mechanism effectively adjusts the torque output of the gear motor to match the requirements of the application. This torque control capability is essential in applications that demand high torque for heavy lifting or overcoming resistance, as well as applications that require lower torque but higher rotational speed.

Speed Control:

The gearing mechanism also contributes to speed control in a gear motor. The gear ratio determines the relationship between the rotational speed of the input shaft (driven by the motor) and the output shaft. When a gear motor has a higher gear ratio (more teeth on the driven gear compared to the driving gear), it reduces the output speed while increasing the torque. Conversely, a lower gear ratio increases the output speed while reducing the torque.

By choosing the appropriate gear ratio, the gearing mechanism allows for precise speed control in a gear motor. This is particularly useful in applications that require specific speed ranges or variations, such as conveyor systems, robotic movements, or machinery that needs to operate at different speeds for different tasks. The speed control capability of the gearing mechanism enables the gear motor to match the desired speed requirements of the application accurately.

In summary, the gearing mechanism in a gear motor contributes to torque and speed control by utilizing different gear ratios and configurations. It enables torque amplification or reduction, depending on the gear arrangement, allowing the gear motor to deliver the required torque output. Additionally, the gear ratio also determines the relationship between the rotational speed of the input and output shafts, providing precise speed control. These torque and speed control capabilities make gear motors versatile and suitable for a wide range of applications in various industries.

China Professional CHINAMFG Brand Single Phase Electric Speed Gear Reducer Motor 220V 900 Rpm 6 Pole   vacuum pump connector	China Professional CHINAMFG Brand Single Phase Electric Speed Gear Reducer Motor 220V 900 Rpm 6 Pole   vacuum pump connector
editor by CX 2024-05-16

China OEM 3W to 750W Micro AC Worm Gear Motor with Speed Controller for Conveyor manufacturer

Product Description

3W to 750W Micro AC worm Gear Motor with Speed Controller for Conveyor

Product Description

1) Dimensions: 70*70mm

2) Power: 6-370W
3) Voltage: 100-380V
4) Torque:0.02~43N.m
5) Reduction ratio: 3~500

Detailed Photos

 

 

Product Parameters

 

Motor type Induction / Brake / Speed adjusting / Reversible / Torque…Motor
Frame size 60 mm / 70mm / 80mm / 90mm / 104mm / 110mm / 130mm…
Running speed Motor 1200-3000 rpm, Gear Ratio 1/3 ~ 1/1800
Output power 6W / 10W / 15W / 25W / 40W / 60W / 90W / 120 W /140W / 2000W / 370W ……3700W
Output shaft 8mm ~ 50mm; round shaft, D-cut shaft, key-way shaft, hollow shaft…
Voltage type Single-Phase 110V/220V; 50Hz/60Hz
Three Phase 220V/380V; 50Hz/60Hz
Accessories Brake / Connector / Terminal box / Capacitor / Controller…
 
Gearbox type Parallel shaft
Right angle hollow worm shaft Right angle bevel hollow shaft Flat type hollow shaft
Right angle CHINAMFG worm shaft Right angle bevel CHINAMFG shaft Flat type CHINAMFG shaft
Planetary center shaft

Our Advantages

The induction reversible deceleration motor has several advantages over other types of motors. Firstly, it has a high-efficiency level, consistent with the modern motor’s design philosophy. This high level of efficiency ensures minimal loss of energy and reduces overall energy costs. Additionally, this motor type has a high starting torque, making it ideal for applications such as conveyors, hoists, and cranes which require high starting torques.

Another benefit of this motor type is its ability to quickly and precisely adjust its speed. The induction reversible deceleration motor can reverse its direction of rotation in a matter of seconds, providing an exceptional degree of control and flexibility in various applications. Besides, it has a simpler structure compared to other types of motors, thus enabling easier maintenance and reducing downtime.

Finally, this motor type also offers environmental benefits. As it operates with minimum noise and vibration, it is an eco-friendly solution, which makes it an excellent option for use in residential and urban areas. Furthermore, its energy efficiency also makes it a more sustainable alternative to other motor types.

Company Profile

FAQ

Q: Can you make the gear motor with customization?

A: Yes, we can customize per your request, like power, voltage, speed, shaft size, wires, connectors, capacitors, terminal box, IP grade, etc.

Q: Do you provide samples?
A: Yes. The sample is available for testing.

Q: What is your MOQ?
A: It is 10pcs for the beginning of our business.

Q: What’s your lead time?
A: Standard products need 5-30 days, a bit longer for customized products.

Q: Do you provide technology support?
A: Yes. Our company has a design and development team, we can provide technology support if you
need.

Q: How to ship to us?
A: It is available by air, by sea, or by train.

Q: How to pay the money?
A: T/T and L/C are preferred, with different currencies, including USD, EUR, RMB, etc.

Q: How can I know if the product is suitable for me?
A: >1ST confirm drawing and specification >2nd test sample >3rd start mass production.

Q: Can I come to your company to visit?
A: Yes, you are welcome to visit us at any time.

Q: How shall we contact you?
A: You can send an inquiry directly, and we will respond within 24 hours.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: Constant Speed
Excitation Mode: Excited
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

1pc for the normal type and design
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

Are there advancements or emerging technologies in micro gear motor development?

Yes, there are several advancements and emerging technologies in micro gear motor development that are shaping the future of this field. Here are some notable examples:

  • Miniaturization: Advancements in manufacturing techniques and materials have enabled the miniaturization of micro gear motors. Today, micro gear motors are becoming smaller while still maintaining high torque and precision. This trend opens up new possibilities for their integration into compact devices and applications where space is limited.
  • High-Efficiency Motors: There is a growing demand for micro gear motors with improved energy efficiency. Manufacturers are developing motor designs and control algorithms that minimize power losses, reduce friction, and optimize the motor’s efficiency across various operating conditions. High-efficiency motors contribute to longer battery life, reduced power consumption, and improved overall system performance.
  • Smart and Connected Motors: With the rise of the Internet of Things (IoT) and smart devices, micro gear motors are being equipped with connectivity features and integrated sensors. These smart and connected motors can communicate with other devices, gather data, and enable advanced control and monitoring capabilities. This integration enhances automation, allows for predictive maintenance, and enables intelligent motor operation in various applications.
  • Magnetic Gear Systems: Traditional mechanical gear systems in micro gear motors can introduce noise, backlash, and wear. Magnetic gear systems offer an alternative approach by utilizing magnetic forces to transmit torque. These systems eliminate the need for physical contact between gears, resulting in reduced friction, improved efficiency, and quieter operation. Magnetic gear systems are being explored and developed for micro gear motor applications where precision and low noise levels are critical.
  • Advanced Materials: The development of new materials, such as high-strength composites and advanced engineering plastics, is driving improvements in micro gear motor performance. These materials offer enhanced mechanical properties, reduced weight, improved wear resistance, and increased durability. The use of advanced materials in micro gear motors contributes to higher torque density, improved efficiency, and extended lifespan.
  • Nanotechnology: Nanotechnology is being explored for its potential impact on micro gear motor development. Nanoscale structures and materials can offer unique properties, such as improved lubrication, reduced friction, and enhanced thermal conductivity. Researchers are investigating the integration of nanomaterials and nanoscale manufacturing techniques to further enhance the performance and reliability of micro gear motors.

These advancements and emerging technologies in micro gear motor development are driving innovation and opening up new possibilities in various industries, including robotics, automation, medical devices, and consumer electronics. As research and development in this field continue, we can expect further improvements in efficiency, miniaturization, connectivity, and overall performance of micro gear motors.

brushless motor

Are there different types of micro gear motors, and how do they suit various applications?

Yes, there are different types of micro gear motors available, and each type is designed to suit specific applications based on their unique characteristics and performance capabilities. Here’s a detailed explanation of different types of micro gear motors and how they are suited for various applications:

1. DC Gear Motors:

DC (Direct Current) gear motors are widely used in various applications due to their simplicity, compact size, and versatility. They consist of a DC motor combined with a gearbox to provide torque multiplication and speed reduction. DC gear motors are available in different configurations, such as spur gear, planetary gear, and worm gear designs. Spur gear motors offer high torque output and are suitable for applications requiring moderate precision and efficiency. Planetary gear motors provide higher torque density, smooth operation, and increased efficiency, making them suitable for applications that require higher precision and compact design. Worm gear motors offer high torque output and are commonly used in applications that require low-speed operation and high gear ratios.

2. AC Gear Motors:

AC (Alternating Current) gear motors are primarily used in applications where a continuous power supply is available. They are typically used in machinery, appliances, and industrial equipment. AC gear motors are available in both synchronous and asynchronous (induction) designs. Synchronous AC gear motors operate at a fixed speed that is synchronized with the frequency of the AC power supply. They are suitable for applications that require constant speed and precise control, such as conveyor systems and robotics. Asynchronous AC gear motors operate at a slightly lower speed than synchronous motors and are commonly used in applications that require variable speed control, such as fans, pumps, and mixers.

3. Brushed and Brushless Gear Motors:

Micro gear motors can be classified into brushed and brushless types based on the type of motor technology used. Brushed gear motors have a commutator and brushes that make physical contact with the armature windings. They are cost-effective, simple in design, and provide good torque characteristics. Brushed gear motors are suitable for applications that require moderate precision, such as automotive systems, consumer electronics, and small appliances. On the other hand, brushless gear motors use electronic commutation instead of brushes and commutators. They offer higher efficiency, longer lifespan, and better speed control compared to brushed motors. Brushless gear motors are commonly used in applications that demand high precision, reliability, and efficiency, such as robotics, medical devices, and aerospace systems.

4. Stepper Gear Motors:

Stepper gear motors are designed to move in discrete steps or increments, making them suitable for applications that require precise positioning and control. They are widely used in applications such as 3D printers, CNC machines, robotics, and automation equipment. Stepper gear motors offer high torque at low speeds and can maintain position without the need for external feedback devices. They provide excellent control over acceleration, deceleration, and position accuracy, allowing for precise motion control in a wide range of applications.

5. Linear Gear Motors:

Linear gear motors, also known as linear actuators or linear motors, are designed to provide linear motion instead of rotational motion. They are used in applications that require precise linear positioning or actuation, such as medical devices, industrial automation, and robotics. Linear gear motors offer advantages such as high speed, high acceleration, precise control, and compact design. They can be either driven by DC or AC power sources, depending on the specific application requirements.

6. Precision Gear Motors:

Precision gear motors are designed to provide high accuracy, low backlash, and smooth operation. They are commonly used in applications that demand precise motion control and positioning, such as robotics, automation, and scientific instruments. Precision gear motors are typically constructed with high-quality materials, precision gears, and advanced control systems to ensure minimal error and high repeatability in motion control applications.

7. Micro Geared Stepper Motors:

Micro geared stepper motors combine the benefits of stepper motors and gear systems. They offer precise positional control, high torque at low speeds, and the ability to maintain position without power. Micro geared stepper motors are commonly used in applications such as robotics, camera systems, medical equipment, and consumer electronics where precise motion control and compact size are essential.

In summary, there are various types of micro gear motors available, each with its own advantages and suitability for specific applications. The choice of motor type depends on factors such as required torque, speed, precision, control, powerI apologize for the confusion.

brushless motor

What are micro gear motors, and how do they differ from standard-sized gear motors?

Micro gear motors are compact and lightweight motor units that combine a small electric motor with a gear mechanism. They are designed to provide precise and controlled motion in applications where space is limited and weight reduction is crucial. Here’s how micro gear motors differ from standard-sized gear motors:

1. Size and Weight:

The most apparent difference between micro gear motors and standard-sized gear motors is their size and weight. Micro gear motors are significantly smaller and lighter than standard-sized gear motors. They are typically designed to fit in tight spaces or applications where size and weight constraints are critical, such as miniature robots, drones, or portable devices.

2. Power and Torque Output:

Due to their smaller size, micro gear motors generally have lower power and torque output compared to standard-sized gear motors. They are optimized for applications that require precise and low-power motion, rather than heavy-duty or high-torque operations. Micro gear motors are commonly used in applications such as micro robotics, medical devices, or small-scale automation systems.

3. Gearing Ratio:

The gearing ratio of micro gear motors is often higher compared to standard-sized gear motors. This means that the gear mechanism in micro gear motors provides a greater reduction in rotational speed and an increase in torque. The higher gearing ratio allows micro gear motors to deliver more torque output relative to their small motor size, enabling precise motion control in miniature applications.

4. Efficiency and Performance:

Micro gear motors may have slightly lower efficiency and performance compared to standard-sized gear motors. The smaller size and compact design can result in higher power losses and increased heat generation. However, advancements in motor and gear manufacturing technologies have significantly improved the efficiency and performance of micro gear motors, making them suitable for a wide range of applications.

5. Operating Characteristics:

Micro gear motors often exhibit different operating characteristics compared to standard-sized gear motors. They may have lower inertia, faster response times, and reduced backlash in the gear mechanism. These characteristics make micro gear motors suitable for applications requiring precise positioning, quick acceleration, and deceleration, such as miniature robotic arms or camera gimbal systems.

6. Cost:

Micro gear motors generally tend to be more expensive compared to standard-sized gear motors. The smaller size and specialized design of micro gear motors involve higher manufacturing costs. Additionally, the demand for micro gear motors is often driven by niche or specialized applications, which can contribute to their higher price point.

Despite their differences, both micro gear motors and standard-sized gear motors serve specific purposes in different applications. The choice between the two depends on the specific requirements of the application, including available space, weight limitations, power and torque requirements, and the desired level of precision and control.

China OEM 3W to 750W Micro AC Worm Gear Motor with Speed Controller for Conveyor   manufacturer China OEM 3W to 750W Micro AC Worm Gear Motor with Speed Controller for Conveyor   manufacturer
editor by CX 2024-05-16

China manufacturer Micro DC Motor Electric Drive High Speed Electromagnetic Gear High Quality Phase Scooters Elevator Shaft Engine Drive Best Stepper Synchronous Motors with high quality

Product Description

Micro DC Motor Electric Drive High Speed Electromagnetic Gear High Quality Phase Scooters Elevator Shaft Engine Drive Best Stepper Synchronous Motors

micro dc motor

Micro motor features
The main difference between our DC micro motors and conventional DC motors is in the rotor. The rotor doesn’t have an iron primary but consists of a self-assisting skew-wound copper winding. This featherweight rotor comes with an extremely low minute of inertia, and it rotates without cogging. The effect is the excellent dynamics of our motors. For low power micro motors, commutation systems using precious metals will be the optimum solution because of their low contact level of resistance.

Our precious steel commutated motors range in size from just 6 mm to 22 mm in diameter.

Micro motor benefits
Ideal for battery operated devices
No cogging
Incredibly low current consumption – low starting voltage
Highly dynamic performance due to a low inertia, low inductance winding
Light and compact
Precise speed control
Simple to control due to the linear performance characteristics

Application of Micro DC Motor

Micro DC motors are a type of electric motor that is typically smaller than 100 watts. They are characterized by their small size, low weight, and high efficiency. Micro DC motors are used in a wide variety of applications, including:

  • Automotive: Micro DC motors are used in a variety of automotive applications, such as power windows, power seats, and sunroofs.
  • Consumer electronics: Micro DC motors are used in a variety of consumer electronics applications, such as electric shavers, toothbrushes, and fans.
  • Industrial: Micro DC motors are used in a variety of industrial applications, such as robotics, automation, and machine tools.
  • Medical: Micro DC motors are used in various medical applications, such as pacemakers, insulin pumps, and surgical instruments.

Micro DC motors are a versatile type of motor that can be used in various applications. They are a reliable and efficient way to convert electrical energy into mechanical energy.

Here are some of the benefits of using micro DC motors:

  • Small size: Micro DC motors are typically smaller than 100 watts, which makes them ideal for applications where space is limited.
  • Low weight: Micro DC motors are lightweight, which makes them easy to transport and install.
  • High efficiency: Micro DC motors are highly efficient, which means they can produce much power for their size.
  • Low noise: Micro DC motors are typically tranquil, which makes them ideal for applications where noise is a concern.
  • Long life: Micro DC motors can have a long service life, which means they can save you money in the long run.

If you are looking for a reliable and efficient way to convert electrical energy into mechanical energy, a micro DC motor is a good option. They are available in various sizes and power ratings, and they can be customized to meet the specific needs of your application.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Open Type
Number of Poles: 6
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|

brushless motor

Can micro gear motors be customized for specific applications, and how is this achieved?

Yes, micro gear motors can be customized to meet the specific requirements of different applications. Customization allows for the optimization of motor performance, size, and features to best suit the intended use. Here’s how customization of micro gear motors is achieved:

  1. Motor Sizing: The customization process begins with determining the appropriate motor size for the application. Factors such as required torque, speed, power consumption, and physical dimensions are considered to select a motor that can deliver the desired performance within the constraints of the application.
  2. Gear Ratio Selection: The gear ratio determines the relationship between the motor’s speed and the output shaft’s speed. By selecting different gear ratios, the torque and speed characteristics of the micro gear motor can be tailored to match the specific requirements of the application. Higher gear ratios provide more torque at the expense of speed, while lower gear ratios offer higher speed at the expense of torque.
  3. Mounting and Integration: Micro gear motors can be customized to facilitate easy integration into the target system or device. Mounting options, such as flanges or brackets, can be designed to ensure secure attachment. Additionally, custom shaft configurations, connectors, and wiring options can be implemented to simplify the motor’s integration into the overall system.
  4. Environmental Considerations: Customization may involve adapting the micro gear motor to operate in specific environmental conditions. For example, if the motor will be exposed to moisture, dust, or extreme temperatures, protective measures such as sealing, specialized coatings, or thermal management solutions can be incorporated into the motor’s design.
  5. Control and Feedback: In some applications, customization may involve integrating specific control and feedback mechanisms into the micro gear motor. This can include position sensors, encoders, or communication interfaces that enable precise control, feedback, and integration with other system components or devices.
  6. Specialized Materials and Components: Custom micro gear motors can utilize specialized materials and components to meet unique application requirements. This may involve using specific gear materials, bearings, or insulation materials that offer enhanced performance, durability, or resistance to certain environmental factors.
  7. Performance Optimization: Customization allows for fine-tuning the micro gear motor’s performance to achieve optimal efficiency, power output, or response characteristics for the specific application. This can involve adjusting motor parameters, control algorithms, or utilizing advanced motor technologies to meet specific performance goals.

Overall, customization of micro gear motors is achieved through a combination of careful motor selection, design modifications, incorporation of specialized features and materials, and optimization of performance parameters. Collaborating with motor manufacturers or engineering firms with expertise in micro gear motors can help tailor the motor to the exact requirements of the application.

brushless motor

Can you provide examples of innovative uses of micro gear motors in modern technology?

Micro gear motors have found innovative applications across various modern technologies. Here are some examples:

  • Drones: Micro gear motors are commonly used in drones to drive the propellers and control the flight. Their compact size, lightweight design, and precise control capabilities make them ideal for achieving stable and agile flight maneuvers.
  • Robotics: Micro gear motors play a crucial role in robotics, powering the joints and actuators of robotic arms, grippers, and humanoid robots. Their precise control, compact form factor, and high torque-to-size ratio enable robots to perform delicate and precise manipulations in industrial automation, medical procedures, and research applications.
  • Automotive Systems: Micro gear motors are used in various automotive systems, such as power windows, door locks, and seat adjustments. Their small size and high torque allow for efficient and reliable operation of these mechanisms within the limited space available in vehicles.
  • Medical Devices: Micro gear motors are utilized in medical devices and equipment, including surgical robots, prosthetics, insulin pumps, and lab automation systems. Their precise control, compact size, and low power consumption make them suitable for applications requiring fine movements, accurate dosing, and miniaturization.
  • Consumer Electronics: Micro gear motors are incorporated into numerous consumer electronic devices. They can be found in cameras for lens movement and autofocus, wearable devices for haptic feedback and vibration, and home appliances for precise control of valves, fans, and robotic components.
  • Smart Home Systems: Micro gear motors are employed in smart home systems to control various functions, such as motorized curtains, blinds, and awnings. Their precise control, quiet operation, and compatibility with automation systems allow for convenient and customizable control of these home features.

These examples represent just a few of the many innovative uses of micro gear motors in modern technology. Their versatility, precision, and compact design make them valuable components in a wide range of applications, contributing to advancements in automation, robotics, electronics, and beyond.

brushless motor

What types of gears are typically employed in micro gear motors for efficient power transmission?

Micro gear motors utilize various types of gears to achieve efficient power transmission. Here are some commonly employed gear types in micro gear motors:

1. Spur Gears:

Spur gears are the most basic and commonly used gears in micro gear motors. They have straight teeth and are mounted on parallel shafts. Spur gears provide efficient power transmission with low noise and high efficiency. They are suitable for applications that require high-speed rotation and moderate torque requirements.

2. Helical Gears:

Helical gears are similar to spur gears but have angled teeth. The angled teeth allow for smoother and quieter operation compared to spur gears. Helical gears provide higher torque transmission capabilities and are commonly used in micro gear motors where reducing noise and vibration is important, such as in precision instruments or small appliances.

3. Planetary Gears:

Planetary gears, also known as epicyclic gears, are compact gear systems that consist of a central gear (sun gear), multiple surrounding gears (planet gears), and an outer ring gear (ring gear). Planetary gears offer high torque transmission capabilities in a compact design. They are commonly used in micro gear motors where a high gear ratio and torque multiplication are required, such as in robotics or automation systems.

4. Worm Gears:

Worm gears consist of a worm (a screw-like gear) and a mating gear called a worm wheel. Worm gears provide a high gear reduction ratio and are suitable for applications that require high torque output and low-speed rotation. They are commonly used in micro gear motors for applications such as valve actuators, conveyor systems, or precision positioning devices.

5. Bevel Gears:

Bevel gears have teeth that are cut on conical surfaces and are used to transmit power between intersecting shafts. They are commonly employed in micro gear motors that require changes in direction or angle of power transmission. Bevel gears provide efficient power transfer and can accommodate a wide range of speed and torque requirements.

6. Hypoid Gears:

Hypoid gears are similar to bevel gears but have offset axes. They are used in micro gear motors that require high torque transmission at right angles. Hypoid gears offer efficient power transmission with reduced noise and vibration, making them suitable for applications that require compact and quiet operation.

7. Rack and Pinion:

Rack and pinion gears consist of a linear gear (rack) meshing with a rotational gear (pinion). They are commonly used in micro gear motors for linear motion applications, such as in CNC machines, 3D printers, or small-scale automation systems. Rack and pinion gears provide efficient and precise linear motion control.

These are some of the common types of gears employed in micro gear motors for efficient power transmission. The choice of gear type depends on the specific requirements of the application, including torque, speed, noise level, and space constraints.

China manufacturer Micro DC Motor Electric Drive High Speed Electromagnetic Gear High Quality Phase Scooters Elevator Shaft Engine Drive Best Stepper Synchronous Motors   with high quality China manufacturer Micro DC Motor Electric Drive High Speed Electromagnetic Gear High Quality Phase Scooters Elevator Shaft Engine Drive Best Stepper Synchronous Motors   with high quality
editor by CX 2024-05-15

China Best Sales Micro DC Motor Electric Drive High Speed Electromagnetic Gear High Quality Phase Scooters Elevator Shaft Engine Drive Best Stepper Synchronous Motors vacuum pump diy

Product Description

Micro DC Motor Electric Drive High Speed Electromagnetic Gear High Quality Phase Scooters Elevator Shaft Engine Drive Best Stepper Synchronous Motors

micro dc motor

Micro motor features
The main difference between our DC micro motors and conventional DC motors is in the rotor. The rotor doesn’t have an iron primary but consists of a self-assisting skew-wound copper winding. This featherweight rotor comes with an extremely low minute of inertia, and it rotates without cogging. The effect is the excellent dynamics of our motors. For low power micro motors, commutation systems using precious metals will be the optimum solution because of their low contact level of resistance.

Our precious steel commutated motors range in size from just 6 mm to 22 mm in diameter.

Micro motor benefits
Ideal for battery operated devices
No cogging
Incredibly low current consumption – low starting voltage
Highly dynamic performance due to a low inertia, low inductance winding
Light and compact
Precise speed control
Simple to control due to the linear performance characteristics

Application of Micro DC Motor

Micro DC motors are a type of electric motor that is typically smaller than 100 watts. They are characterized by their small size, low weight, and high efficiency. Micro DC motors are used in a wide variety of applications, including:

  • Automotive: Micro DC motors are used in a variety of automotive applications, such as power windows, power seats, and sunroofs.
  • Consumer electronics: Micro DC motors are used in a variety of consumer electronics applications, such as electric shavers, toothbrushes, and fans.
  • Industrial: Micro DC motors are used in a variety of industrial applications, such as robotics, automation, and machine tools.
  • Medical: Micro DC motors are used in various medical applications, such as pacemakers, insulin pumps, and surgical instruments.

Micro DC motors are a versatile type of motor that can be used in various applications. They are a reliable and efficient way to convert electrical energy into mechanical energy.

Here are some of the benefits of using micro DC motors:

  • Small size: Micro DC motors are typically smaller than 100 watts, which makes them ideal for applications where space is limited.
  • Low weight: Micro DC motors are lightweight, which makes them easy to transport and install.
  • High efficiency: Micro DC motors are highly efficient, which means they can produce much power for their size.
  • Low noise: Micro DC motors are typically tranquil, which makes them ideal for applications where noise is a concern.
  • Long life: Micro DC motors can have a long service life, which means they can save you money in the long run.

If you are looking for a reliable and efficient way to convert electrical energy into mechanical energy, a micro DC motor is a good option. They are available in various sizes and power ratings, and they can be customized to meet the specific needs of your application.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Open Type
Number of Poles: 6
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|

brushless motor

Where can individuals find reputable suppliers or manufacturers of micro gear motors?

Individuals looking for reputable suppliers or manufacturers of micro gear motors can consider the following reliable sources:

  • Online Directories: Online directories, such as Thomasnet, Alibaba, or GlobalSpec, provide comprehensive listings of suppliers and manufacturers across various industries. These directories often include detailed profiles, product catalogs, and customer reviews, making it easier to evaluate and connect with reputable micro gear motor suppliers.
  • Trade Shows and Exhibitions: Attending industry-specific trade shows and exhibitions offers an excellent opportunity to meet and connect with reputable micro gear motor manufacturers and suppliers. These events gather industry professionals, showcase the latest technologies, and provide a platform for networking and establishing business relationships.
  • Industry Associations: Industry associations, such as the Robotics Industries Association (RIA) or the National Electrical Manufacturers Association (NEMA), can provide valuable resources and directories of reputable micro gear motor manufacturers and suppliers. These associations often have strict membership criteria, ensuring that listed companies adhere to industry standards and best practices.
  • Referrals and Recommendations: Seek referrals or recommendations from colleagues, industry experts, or professionals who have experience working with micro gear motors. Their firsthand experiences can provide insights into reputable manufacturers or suppliers known for their quality products, reliable services, and customer support.
  • Online Research and Reviews: Conducting online research allows individuals to explore various manufacturers or suppliers of micro gear motors. Look for websites, online forums, or discussion boards that provide reviews, ratings, or testimonials from customers. Reading unbiased experiences and feedback can help identify reputable companies that consistently deliver high-quality products and excellent customer service.
  • Consulting with Industry Experts: Seek advice from industry experts, engineers, or consultants who specialize in micro gear motors. They often have extensive knowledge of the market, industry trends, and reputable manufacturers or suppliers. Consulting with experts can provide valuable insights and guidance in selecting the right supplier for specific requirements.

It is important to conduct due diligence when evaluating suppliers or manufacturers. Consider factors such as their reputation, years of experience in the industry, product quality, certifications, customer support, and delivery capabilities. Request samples, specifications, or references to assess their suitability for the intended application.

By utilizing these sources and conducting thorough research, individuals can find reputable suppliers or manufacturers of micro gear motors that meet their specific needs and ensure reliable and high-quality products.

brushless motor

What challenges or limitations might be associated with the use of micro gear motors?

Micro gear motors, despite their many advantages, also come with certain challenges and limitations. Here are some of them:

  • Size and Space Constraints: Micro gear motors are designed to be compact and small in size, which can be advantageous in many applications. However, the small size can also limit the power output and torque capabilities of the motor, making them unsuitable for applications that require high power or high torque.
  • Heat Dissipation: Micro gear motors can generate heat during operation, especially when subjected to high loads or continuous use. The compact size and limited surface area of the motor can make heat dissipation challenging, potentially leading to overheating and reduced performance or lifespan. Proper heat dissipation strategies such as cooling fans or heat sinks may be required in certain applications.
  • Noise and Vibration: Due to the mechanical nature of gear systems, micro gear motors can produce noise and vibration during operation. The noise and vibration levels can vary depending on the quality of the gears and the design of the motor. In applications where noise or vibration is a concern, additional measures such as noise-reducing enclosures or vibration dampening techniques may be necessary.
  • Limited Lifespan: Micro gear motors, like any mechanical system, have a limited lifespan. The continuous operation, high loads, and friction within the gear system can contribute to wear and tear over time. Regular maintenance, lubrication, and periodic replacement of worn-out components may be required to ensure optimal performance and longevity.
  • Cost: Micro gear motors, especially those with advanced features or high precision, can be relatively expensive compared to other motor types. The cost of manufacturing, materials, and specialized components can contribute to the overall cost. Additionally, the need for additional accessories such as controllers or drivers may further increase the cost of implementing micro gear motors in certain applications.

Despite these challenges and limitations, micro gear motors offer unique advantages and are suitable for a wide range of applications. Understanding the specific requirements and limitations of the motor can help in selecting the appropriate type and optimizing its performance in a given application.

brushless motor

What types of gears are typically employed in micro gear motors for efficient power transmission?

Micro gear motors utilize various types of gears to achieve efficient power transmission. Here are some commonly employed gear types in micro gear motors:

1. Spur Gears:

Spur gears are the most basic and commonly used gears in micro gear motors. They have straight teeth and are mounted on parallel shafts. Spur gears provide efficient power transmission with low noise and high efficiency. They are suitable for applications that require high-speed rotation and moderate torque requirements.

2. Helical Gears:

Helical gears are similar to spur gears but have angled teeth. The angled teeth allow for smoother and quieter operation compared to spur gears. Helical gears provide higher torque transmission capabilities and are commonly used in micro gear motors where reducing noise and vibration is important, such as in precision instruments or small appliances.

3. Planetary Gears:

Planetary gears, also known as epicyclic gears, are compact gear systems that consist of a central gear (sun gear), multiple surrounding gears (planet gears), and an outer ring gear (ring gear). Planetary gears offer high torque transmission capabilities in a compact design. They are commonly used in micro gear motors where a high gear ratio and torque multiplication are required, such as in robotics or automation systems.

4. Worm Gears:

Worm gears consist of a worm (a screw-like gear) and a mating gear called a worm wheel. Worm gears provide a high gear reduction ratio and are suitable for applications that require high torque output and low-speed rotation. They are commonly used in micro gear motors for applications such as valve actuators, conveyor systems, or precision positioning devices.

5. Bevel Gears:

Bevel gears have teeth that are cut on conical surfaces and are used to transmit power between intersecting shafts. They are commonly employed in micro gear motors that require changes in direction or angle of power transmission. Bevel gears provide efficient power transfer and can accommodate a wide range of speed and torque requirements.

6. Hypoid Gears:

Hypoid gears are similar to bevel gears but have offset axes. They are used in micro gear motors that require high torque transmission at right angles. Hypoid gears offer efficient power transmission with reduced noise and vibration, making them suitable for applications that require compact and quiet operation.

7. Rack and Pinion:

Rack and pinion gears consist of a linear gear (rack) meshing with a rotational gear (pinion). They are commonly used in micro gear motors for linear motion applications, such as in CNC machines, 3D printers, or small-scale automation systems. Rack and pinion gears provide efficient and precise linear motion control.

These are some of the common types of gears employed in micro gear motors for efficient power transmission. The choice of gear type depends on the specific requirements of the application, including torque, speed, noise level, and space constraints.

China Best Sales Micro DC Motor Electric Drive High Speed Electromagnetic Gear High Quality Phase Scooters Elevator Shaft Engine Drive Best Stepper Synchronous Motors   vacuum pump diyChina Best Sales Micro DC Motor Electric Drive High Speed Electromagnetic Gear High Quality Phase Scooters Elevator Shaft Engine Drive Best Stepper Synchronous Motors   vacuum pump diy
editor by CX 2024-05-14

China Good quality 6W 25W 40W 60W 80W 90W 120W 200W 370W 0.5HP 220V 230V AC Induction Gear Variable Speed Control Motor vacuum pump belt

Product Description

6w 25W 40W 60W 80W 90W 120W 200w 370w 0.5Hp 220v 230v AC Induction Gear Variable Speed Control Motor

AC Gear Motor Ranges:

Motor type Induction motor, brake motor, torque motor, speed adjustable motor, reversible motor
Frame size 60 mm, 70mm, 80mm, 90mm, 104mm
Motor Output speed 1250rpm – 1500rpm
Gearbox Speed Ratio 1:3 – 1: 500
Output power 60mm: 6W, 10W

70mm: 15W, 20W

80mm: 25W, 30W

90mm: 40W, 60W, 90W, 120W

104mm: 140W, 200W, 250W, 370W


 

Output shaft 8mm ~ 50mm; round shaft, D-cut shaft, key-way shaft, hollow shaft
Voltage 110v, 220v, 230v, 380v
Frequency 50Hz, 60Hz
If you need standard or customized AC or DC motors, pls freely contact us. We shall reply wihtin 12 hours.

Similiar Products Recommended:

 

Company Overview

 
HISTORY: Greensky is a mechanical brand of CHINAMFG Power Co., Ltd. With over 10 years’
mechanical manufacturing experiences, CHINAMFG Power always strictly stands on the
principle of Best Customer Satisfaction.

QUALITY: Material Inspection, Production Control, Finished Goods Test, Pre-dellivery Inspection

MISSION: “Once and forever” is our goal to serve customers in the world. Once we do
business with customer, we will do business forever.

MARKET30 different countries, mainly Germany, Austria, Japan, USA and Middle-East.

DELIVERY100% on-time delivery Guaranteed.

SERVICESFast response in English, German, Japanese and Chinese languages.

OEMCustomized orders are welcome at CHINAMFG Power.
  

Certificates

Overseas Exhibitions

Welcome your inquiry! Our Sales Team will reply you as soon as possible.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal
Speed: Variable Speed
Number of Stator: 1pH/3pH
Function: Driving, Control
Casing Protection: Protection Type
Number of Poles: 4
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

Are gear motors suitable for both heavy-duty industrial applications and smaller-scale uses?

Yes, gear motors are suitable for both heavy-duty industrial applications and smaller-scale uses. Their versatility and ability to provide torque multiplication make them valuable in a wide range of applications. Here’s a detailed explanation of why gear motors are suitable for both types of applications:

1. Heavy-Duty Industrial Applications:

Gear motors are commonly used in heavy-duty industrial applications due to their robustness and ability to handle high loads. Here are the reasons why they are suitable for such applications:

  • Torque Multiplication: Gear motors are designed to provide high torque output, making them ideal for applications that require substantial force to move or operate heavy machinery, conveyors, or equipment.
  • Load Handling: Industrial settings often involve heavy loads and demanding operating conditions. Gear motors, with their ability to handle high loads, are well-suited for tasks such as lifting, pulling, pushing, or driving heavy materials or equipment.
  • Durability: Heavy-duty industrial applications require components that can withstand harsh environments, frequent use, and demanding operating conditions. Gear motors are typically constructed with durable materials and designed to withstand heavy vibrations, shock loads, and temperature variations.
  • Speed Reduction: Many industrial processes require the reduction of motor speed to achieve the desired output speed. Gear motors offer precise speed reduction capabilities through gear ratios, allowing for optimal control and operation of machinery and equipment.

2. Smaller-Scale Uses:

While gear motors excel in heavy-duty industrial applications, they are also suitable for smaller-scale uses across various industries and applications. Here’s why gear motors are well-suited for smaller-scale uses:

  • Compact Size: Gear motors are available in compact sizes, making them suitable for applications with limited space or small-scale machinery, devices, or appliances.
  • Torque and Power Control: Even in smaller-scale applications, there may be a need for torque multiplication or precise power control. Gear motors can provide the necessary torque and power output for tasks such as precise positioning, controlling speed, or driving small loads.
  • Versatility: Gear motors come in various configurations, such as parallel shaft, planetary, or worm gear designs, offering flexibility to match specific requirements. They can be adapted to different applications, including robotics, medical devices, automotive systems, home automation, and more.
  • Efficiency: Gear motors are designed to be efficient, converting the electrical input power into mechanical output power with minimal losses. This efficiency is advantageous for smaller-scale applications where energy conservation and battery life are critical.

Overall, gear motors are highly versatile and suitable for both heavy-duty industrial applications and smaller-scale uses. Their ability to provide torque multiplication, handle high loads, offer precise speed control, and accommodate various sizes and configurations makes them a reliable choice in a wide range of applications. Whether it’s powering large industrial machinery or driving small-scale automation systems, gear motors provide the necessary torque, control, and durability required for efficient operation.

gear motor

How do gear motors compare to other types of motors in terms of power and efficiency?

Gear motors can be compared to other types of motors in terms of power output and efficiency. The choice of motor type depends on the specific application requirements, including the desired power level, efficiency, speed range, torque characteristics, and control capabilities. Here’s a detailed explanation of how gear motors compare to other types of motors in terms of power and efficiency:

1. Gear Motors:

Gear motors combine a motor with a gear mechanism to deliver increased torque output and improved control. The gear reduction enables gear motors to provide higher torque while reducing the output speed. This makes gear motors suitable for applications that require high torque, precise positioning, and controlled movements. However, the gear reduction process introduces mechanical losses, which can slightly reduce the overall efficiency of the system compared to direct-drive motors. The efficiency of gear motors can vary depending on factors such as gear quality, lubrication, and maintenance.

2. Direct-Drive Motors:

Direct-drive motors, also known as gearless or integrated motors, do not use a gear mechanism. They provide a direct connection between the motor and the load, eliminating the need for gear reduction. Direct-drive motors offer advantages such as high efficiency, low maintenance, and compact design. Since there are no gears involved, direct-drive motors experience fewer mechanical losses and can achieve higher overall efficiency compared to gear motors. However, direct-drive motors may have limitations in terms of torque output and speed range, and they may require more complex control systems to achieve precise positioning.

3. Stepper Motors:

Stepper motors are a type of gear motor that excels in precise positioning applications. They operate by converting electrical pulses into incremental steps of movement. Stepper motors offer excellent positional accuracy and control. They are capable of precise positioning and can hold a position without power. Stepper motors have relatively high torque at low speeds, making them suitable for applications that require precise control and positioning, such as robotics, 3D printers, and CNC machines. However, stepper motors may have lower overall efficiency compared to direct-drive motors due to the additional power required to overcome the detents between steps.

4. Servo Motors:

Servo motors are another type of gear motor known for their high torque, high speed, and excellent positional accuracy. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer precise control over position, speed, and torque. Servo motors are widely used in applications that require accurate and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems. Servo motors can achieve high efficiency when properly optimized and controlled but may have slightly lower efficiency compared to direct-drive motors due to the additional complexity of the control system.

5. Efficiency Considerations:

When comparing power and efficiency among different motor types, it’s important to consider the specific requirements and operating conditions of the application. Factors such as load characteristics, speed range, duty cycle, and control requirements influence the overall efficiency of the motor system. While direct-drive motors generally offer higher efficiency due to the absence of mechanical losses from gears, gear motors can deliver higher torque output and enhanced control capabilities. The efficiency of gear motors can be optimized through proper gear selection, lubrication, and maintenance practices.

In summary, gear motors offer increased torque and improved control compared to direct-drive motors. However, gear reduction introduces mechanical losses that can slightly impact the overall efficiency of the system. Direct-drive motors, on the other hand, provide high efficiency and compact design but may have limitations in terms of torque and speed range. Stepper motors and servo motors, both types of gear motors, excel in precise positioning applications but may have slightly lower efficiency compared to direct-drive motors. The selection of the most suitable motor type depends on the specific requirements of the application, balancing power, efficiency, speed range, and control capabilities.

gear motor

What is a gear motor, and how does it combine the functions of gears and a motor?

A gear motor is a type of motor that incorporates gears into its design to combine the functions of gears and a motor. It consists of a motor, which provides the mechanical power, and a set of gears, which transmit and modify this power to achieve specific output characteristics. Here’s a detailed explanation of what a gear motor is and how it combines the functions of gears and a motor:

A gear motor typically consists of two main components: the motor and the gear system. The motor is responsible for converting electrical energy into mechanical energy, generating rotational motion. The gear system, on the other hand, consists of multiple gears with different sizes and tooth configurations. These gears are meshed together in a specific arrangement to transmit and modify the output torque and speed of the motor.

The gears in a gear motor serve several functions:

1. Torque Amplification:

One of the primary functions of the gear system in a gear motor is to amplify the torque output of the motor. By using gears with different sizes, the input torque can be effectively multiplied or reduced. This allows the gear motor to provide higher torque at lower speeds or lower torque at higher speeds, depending on the gear arrangement. This torque amplification is beneficial in applications where high torque is required, such as in heavy machinery or vehicles.

2. Speed Reduction or Increase:

The gear system in a gear motor can also be used to reduce or increase the rotational speed of the motor output. By utilizing gears with different numbers of teeth, the gear ratio can be adjusted to achieve the desired speed output. For example, a gear motor with a higher gear ratio will output lower speed but higher torque, whereas a gear motor with a lower gear ratio will output higher speed but lower torque. This speed control capability allows for precise matching of motor output to the requirements of specific applications.

3. Directional Control:

Gears in a gear motor can be used to control the direction of rotation of the motor output shaft. By employing different combinations of gears, such as spur gears, bevel gears, or worm gears, the rotational direction can be changed. This directional control is crucial in applications where bidirectional movement is required, such as in conveyor systems or robotic arms.

4. Load Distribution:

The gear system in a gear motor helps distribute the load evenly across multiple gears, which reduces the stress on individual gears and increases the overall durability and lifespan of the motor. By sharing the load among multiple gears, the gear motor can handle higher torque applications without putting excessive strain on any particular gear. This load distribution capability is especially important in heavy-duty applications that require continuous operation under demanding conditions.

By combining the functions of gears and a motor, gear motors offer several advantages. They provide torque amplification, speed control, directional control, and load distribution capabilities, making them suitable for various applications that require precise and controlled mechanical power. Gear motors are commonly used in industries such as robotics, automotive, manufacturing, and automation, where reliable and efficient power transmission is essential.

China Good quality 6W 25W 40W 60W 80W 90W 120W 200W 370W 0.5HP 220V 230V AC Induction Gear Variable Speed Control Motor   vacuum pump belt	China Good quality 6W 25W 40W 60W 80W 90W 120W 200W 370W 0.5HP 220V 230V AC Induction Gear Variable Speed Control Motor   vacuum pump belt
editor by CX 2024-05-14

China Best Sales Micro DC Gear Motor N20 Smart Lock Speed Regulating Gear Motor vacuum pump brakes

Product Description

Product Description

High Power version with 1.6A stall current:1.6A
With 12CPR without encoder ;  
With back shaft or not.
With metal brush or carbon brush
 

Model Voltage

Unit: VDC

No load speed

Unit: rpm

Noload current

Unit: mA

Stall torque

Unit: kg.cm

Gear ratio
N20H5 6V/12V 6000 rpm 120/60mA 0.1 kg.cm 5:1
N20H10 6V/12V 3000 rpm 120/60mA 0.2 kg.cm 10:1
N20H20 6V/12V 1500 rpm 120/60mA 0.4 kg.cm 20:1
N20H30 6V/12V 1000 rpm 120/60mA 0.6 kg.cm 30:1
N20H50 6V/12V 625 rpm 120/60mA 1.0 kg.cm 50:1
N20H75 6V/12V 400 rpm 120/60mA 1.5 kg.cm 75:1
N20H100 6V/12V 320 rpm 120/60mA 2.0 kg.cm 100:1
N20H150 6V/12V 200 rpm 120/60mA 3.0 kg.cm 150:1
N20H210 6V/12V 140 rpm 120/60mA 3.6 kg.cm 210:1
N20H250 6V/12V 120 rpm 120/60mA 4.2 kg.cm 250:1
N20H298 6V/12V 100 rpm 120/60mA 5.0 kg.cm 298:1
N20H380 6V/12V 78 rpm 120/60mA 6.3 kg.cm 380:1
N20H1000 6V/12V 32 rpm 120/60mA 9.0 kg.cm 1000:1

Detailed Photos

 

Product Parameters

 

Certifications

 

Product details assembly

Company Profile

FAQ

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: DC Gear Motor
Operating Speed: Low Speed
Excitation Mode: Excited
Function: Driving
Casing Protection: Open Type
Number of Poles: 2
Customization:
Available

|

brushless motor

What safety considerations should be taken into account when working with micro gear motors?

When working with micro gear motors, it is important to consider the following safety considerations:

  • Electrical Safety: Micro gear motors are powered by electricity, so it is crucial to follow electrical safety practices. Ensure that the motor is properly grounded, and use appropriate insulation and protective measures to prevent electrical shock hazards. Avoid working on the motor while it is energized.
  • Mechanical Hazards: Micro gear motors may have rotating components, such as shafts and gears, that can pose mechanical hazards. Take precautions to prevent accidental contact with moving parts. Use protective covers or enclosures to shield the motor, and avoid reaching into the motor assembly during operation.
  • Proper Installation: Follow the manufacturer’s instructions for the correct installation of the micro gear motor. Improper installation can lead to malfunctions, increased risks, and reduced performance. Ensure that the motor is securely mounted and aligned according to the recommended guidelines.
  • Overloading and Overheating: Avoid overloading the micro gear motor beyond its specified limits. Exceeding the motor’s maximum torque or operating it at excessively high temperatures can lead to performance degradation, premature wear, and potential safety hazards. Monitor the motor’s operating conditions and ensure adequate cooling to prevent overheating.
  • Environmental Considerations: Consider the environmental conditions in which the micro gear motor will be operated. If the motor is exposed to moisture, dust, or extreme temperatures, choose a motor with appropriate protection ratings or implement additional protective measures, such as sealing or thermal management solutions.
  • Control and Automation: When integrating micro gear motors into control systems or automation setups, ensure that the control circuits and interfaces are designed and implemented correctly. Improper wiring, incorrect signal levels, or faulty control circuits can lead to unpredictable motor behavior, safety risks, or damage to the motor and other components.
  • Maintenance and Inspection: Regularly inspect and maintain the micro gear motor according to the manufacturer’s recommendations. This includes cleaning, lubrication, and checking for signs of wear or damage. Perform maintenance tasks with the motor turned off and power sources disconnected to prevent accidental activation.
  • Personal Protective Equipment (PPE): Depending on the specific application and associated hazards, it may be necessary to wear appropriate personal protective equipment, such as safety glasses, gloves, or protective clothing, when working with micro gear motors. Assess the risks and adhere to safety guidelines to determine the necessary PPE.

Paying attention to these safety considerations when working with micro gear motors helps mitigate risks, ensures proper functionality, and promotes a safe working environment. It is important to familiarize oneself with the specific safety guidelines provided by the manufacturer and adhere to any local safety regulations or standards applicable to the industry or application.

brushless motor

What factors should be considered when selecting a micro gear motor for a particular application?

When selecting a micro gear motor for a particular application, several important factors should be taken into consideration. These factors help ensure that the chosen motor meets the specific requirements of the application and performs optimally. Here are the key factors to consider:

1. Torque Requirement:

Determine the torque requirements of the application. Consider both the maximum torque needed and the continuous torque required for sustained operation. Select a micro gear motor that can deliver the required torque output while considering factors such as load variations, start-up torque, and intermittent peak torque demands.

2. Speed Requirement:

Consider the desired speed range for the application. Determine the required output speed of the micro gear motor to ensure that it can meet the speed requirements of the specific task. It is important to select a motor with an appropriate gear ratio that can achieve the desired speed while considering the motor’s inherent speed limitations.

3. Power Supply:

Take into account the available power supply for the micro gear motor. Consider the voltage and current requirements of the motor and ensure compatibility with the available power source. Additionally, consider the power consumption and efficiency of the motor to optimize energy usage and minimize heat generation.

4. Physical Size and Mounting:

Consider the physical size and mounting requirements of the micro gear motor. Evaluate the available space for installation and ensure that the motor dimensions fit within the allotted space. Consider the mounting options, such as through-hole mounting, flange mounting, or custom mounting brackets, and choose a motor that can be easily integrated into the application.

5. Environmental Conditions:

Assess the environmental conditions in which the micro gear motor will operate. Consider factors such as temperature range, humidity, dust, vibration, and exposure to chemicals or corrosive substances. Select a motor that is designed to withstand and perform reliably under the specific environmental conditions of the application.

6. Expected Lifetime and Reliability:

Evaluate the expected lifetime and reliability requirements of the micro gear motor. Consider the duty cycle of the application, the expected operating hours, and the required maintenance intervals. Choose a motor with a reputation for reliability and durability to ensure long-term performance without frequent breakdowns or the need for premature replacements.

7. Control and Feedback:

Consider the control and feedback requirements of the micro gear motor. Determine if the application requires specific control interfaces, such as analog or digital signals, PWM control, or communication protocols like Modbus or CAN bus. Additionally, assess whether feedback mechanisms like encoders or sensors are necessary to provide accurate position or speed control.

8. Cost and Budget:

Evaluate the cost and budget constraints for the micro gear motor. Consider the overall cost of the motor, including the initial purchase price, installation costs, and any additional accessories or components required for proper operation. Balance the desired performance and features with the available budget to select a motor that provides the best value for the specific application.

9. Supplier and Support:

Consider the reputation and support provided by the micro gear motor supplier. Choose a reliable supplier with a track record of delivering quality products and excellent customer support. Ensure that the supplier offers technical assistance, documentation, and warranty coverage to address any potential issues or concerns that may arise during the motor’s lifespan.

By considering these factors, you can make an informed decision when selecting a micro gear motor for a particular application. It is essential to carefully evaluate the requirements and characteristics of the application to choose a motor that will meet performance expectations, ensure reliability, and provide optimal functionality.

brushless motor

What types of gears are typically employed in micro gear motors for efficient power transmission?

Micro gear motors utilize various types of gears to achieve efficient power transmission. Here are some commonly employed gear types in micro gear motors:

1. Spur Gears:

Spur gears are the most basic and commonly used gears in micro gear motors. They have straight teeth and are mounted on parallel shafts. Spur gears provide efficient power transmission with low noise and high efficiency. They are suitable for applications that require high-speed rotation and moderate torque requirements.

2. Helical Gears:

Helical gears are similar to spur gears but have angled teeth. The angled teeth allow for smoother and quieter operation compared to spur gears. Helical gears provide higher torque transmission capabilities and are commonly used in micro gear motors where reducing noise and vibration is important, such as in precision instruments or small appliances.

3. Planetary Gears:

Planetary gears, also known as epicyclic gears, are compact gear systems that consist of a central gear (sun gear), multiple surrounding gears (planet gears), and an outer ring gear (ring gear). Planetary gears offer high torque transmission capabilities in a compact design. They are commonly used in micro gear motors where a high gear ratio and torque multiplication are required, such as in robotics or automation systems.

4. Worm Gears:

Worm gears consist of a worm (a screw-like gear) and a mating gear called a worm wheel. Worm gears provide a high gear reduction ratio and are suitable for applications that require high torque output and low-speed rotation. They are commonly used in micro gear motors for applications such as valve actuators, conveyor systems, or precision positioning devices.

5. Bevel Gears:

Bevel gears have teeth that are cut on conical surfaces and are used to transmit power between intersecting shafts. They are commonly employed in micro gear motors that require changes in direction or angle of power transmission. Bevel gears provide efficient power transfer and can accommodate a wide range of speed and torque requirements.

6. Hypoid Gears:

Hypoid gears are similar to bevel gears but have offset axes. They are used in micro gear motors that require high torque transmission at right angles. Hypoid gears offer efficient power transmission with reduced noise and vibration, making them suitable for applications that require compact and quiet operation.

7. Rack and Pinion:

Rack and pinion gears consist of a linear gear (rack) meshing with a rotational gear (pinion). They are commonly used in micro gear motors for linear motion applications, such as in CNC machines, 3D printers, or small-scale automation systems. Rack and pinion gears provide efficient and precise linear motion control.

These are some of the common types of gears employed in micro gear motors for efficient power transmission. The choice of gear type depends on the specific requirements of the application, including torque, speed, noise level, and space constraints.

China Best Sales Micro DC Gear Motor N20 Smart Lock Speed Regulating Gear Motor   vacuum pump brakesChina Best Sales Micro DC Gear Motor N20 Smart Lock Speed Regulating Gear Motor   vacuum pump brakes
editor by CX 2024-05-14

China supplier High Speed Low Rpm 16mm Micro DC Gear Motor manufacturer

Product Description

high speed low rpm 16MM micro DC gear motor

Product Category

China manufacturer gear motor price With Professional Technical Support

We always provide customers with distinctive products:cost-effective, lower
noise, higher efficiency and stability, longer life and higher strength.

Basic information
Product name PG16M050series,16mm diameter planet gear motor
Motor type carbon-brush commutator
Gear type Straight gearwheel,planet construction
Housing material Steel
Geartrain material Steel and Powdered Metal,POM optional
Bearing at output shaft Sleeve bearing
Lubricant Grease for high-low temperature, -62—+204 degree
Backlash at no-load <1°,MIN0.3°
OEM & ODM Service Available 
Certificate CE,ROHS,ISO/TS16949

 

An exact model of gearbox and motor combination
Product seires PG16M050 series
An exact Model NO. PG16M050 24 6000-198K
Motor Voltage(VDC) 24
Motor no load speed(rpm) 6000
Gearbox reduction ratio 198K
Gearmotor no load current(A) <0.039
Gearmotor no load speed(rpm) 29+/-10%
Gearmotor rated load torque(kgf.cm) 6.3
Gearmotor rated current(A) <0.194
Gearmotor rated load speed(rpm) 24+/-10%
Noise (DB) <55DB 
Lifetime 1000+ hours (varies by application)
Rotation CW/CCW reversible

Packing&Xihu (West Lake) Dis.

Company Information

FAQ
 

Q: Are you a trading company or a manufacturer?
A: We are a manufacturer.
Q: Can you make a motor with custom specifications?
A: Yes, actually that is what we do most of the time.
 Q: What is the MOQ (minimum order quantity)?
A: 1 pc for sample order, and 100pcs for bulk order.
Q: Do you have motors in stock?
A: No, we don’t. All motors are made with orders.
Q: How to pay you?
Paypal, Western Union, Money Gram, T/T, L/C payment are acceptable.
Q: What do you need to know if I need a recommendation on motor?
A: Normally we need to know dimensions, rated voltage, speed at load/no load, torque at load/stall. i.e.
a motor with diameter 37mm, 12V, 100rpm and 2Kgf.cm at load.
Q: Can I ask you for help if I know nothing about motor?
A: Yes, our pleasure. We are nice people with big hearts.
Q: Can we type our brand on it?
A: Yes of course.
Q: Where is your loading port ?
A: HangZhou Port, ZheJiang Port, China.
Q: What is your production capacity?
A: About 4000 PCS per day.
Q: Can I visit your factory?
A: Yes,of course

CONTACT US

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Constant Speed
Casing Protection: Closed Type
Number of Poles: 2
Structure and Working Principle: Brush
Certification: ISO9001, ISO/Ts16949/Ce/Rhos
Customization:
Available

|

brushless motor

What safety considerations should be taken into account when working with micro gear motors?

When working with micro gear motors, it is important to consider the following safety considerations:

  • Electrical Safety: Micro gear motors are powered by electricity, so it is crucial to follow electrical safety practices. Ensure that the motor is properly grounded, and use appropriate insulation and protective measures to prevent electrical shock hazards. Avoid working on the motor while it is energized.
  • Mechanical Hazards: Micro gear motors may have rotating components, such as shafts and gears, that can pose mechanical hazards. Take precautions to prevent accidental contact with moving parts. Use protective covers or enclosures to shield the motor, and avoid reaching into the motor assembly during operation.
  • Proper Installation: Follow the manufacturer’s instructions for the correct installation of the micro gear motor. Improper installation can lead to malfunctions, increased risks, and reduced performance. Ensure that the motor is securely mounted and aligned according to the recommended guidelines.
  • Overloading and Overheating: Avoid overloading the micro gear motor beyond its specified limits. Exceeding the motor’s maximum torque or operating it at excessively high temperatures can lead to performance degradation, premature wear, and potential safety hazards. Monitor the motor’s operating conditions and ensure adequate cooling to prevent overheating.
  • Environmental Considerations: Consider the environmental conditions in which the micro gear motor will be operated. If the motor is exposed to moisture, dust, or extreme temperatures, choose a motor with appropriate protection ratings or implement additional protective measures, such as sealing or thermal management solutions.
  • Control and Automation: When integrating micro gear motors into control systems or automation setups, ensure that the control circuits and interfaces are designed and implemented correctly. Improper wiring, incorrect signal levels, or faulty control circuits can lead to unpredictable motor behavior, safety risks, or damage to the motor and other components.
  • Maintenance and Inspection: Regularly inspect and maintain the micro gear motor according to the manufacturer’s recommendations. This includes cleaning, lubrication, and checking for signs of wear or damage. Perform maintenance tasks with the motor turned off and power sources disconnected to prevent accidental activation.
  • Personal Protective Equipment (PPE): Depending on the specific application and associated hazards, it may be necessary to wear appropriate personal protective equipment, such as safety glasses, gloves, or protective clothing, when working with micro gear motors. Assess the risks and adhere to safety guidelines to determine the necessary PPE.

Paying attention to these safety considerations when working with micro gear motors helps mitigate risks, ensures proper functionality, and promotes a safe working environment. It is important to familiarize oneself with the specific safety guidelines provided by the manufacturer and adhere to any local safety regulations or standards applicable to the industry or application.

brushless motor

How does the control system of micro gear motors contribute to precision in small-scale applications?

The control system of micro gear motors plays a crucial role in achieving precision in small-scale applications. Here’s how it contributes to precision:

  • Speed Control: The control system allows precise regulation of the motor’s speed, enabling accurate and consistent movement in small-scale applications. By adjusting the voltage or current supplied to the motor, the control system can control the rotational speed of the motor shaft, ensuring precise motion according to the application’s requirements.
  • Position Control: Micro gear motors with advanced control systems, such as stepper motors, offer precise position control. The control system sends specific signals or pulses to the motor, causing it to move in discrete steps or increments. This allows for accurate positioning in small-scale applications where precise movements and alignment are critical. The control system can also maintain the motor’s position without the need for external feedback devices, enhancing precision and simplifying the overall system.
  • Torque Control: In some applications, maintaining consistent torque is essential for precision. The control system of micro gear motors can regulate the torque output, ensuring that the motor delivers the required amount of force accurately and consistently. This is particularly important in tasks that involve delicate or precise movements, such as robotics, where excessive torque can cause damage or imprecise results.
  • Feedback Mechanisms: Many micro gear motors incorporate feedback mechanisms into their control systems. These mechanisms provide information about the motor’s performance, such as speed, position, or current, and allow the control system to make adjustments in real-time. Feedback mechanisms, such as encoders or sensors, enable closed-loop control, where the control system continuously monitors and adjusts the motor’s operation to maintain precision and accuracy.
  • Control Algorithms: The control system of micro gear motors often incorporates sophisticated control algorithms that optimize performance and precision. These algorithms can include proportional-integral-derivative (PID) controllers, adaptive control, or advanced motion control algorithms. By analyzing the input signals, sensory feedback, and desired output, these algorithms can adjust the motor’s operation to minimize errors, disturbances, or deviations from the desired motion, thus enhancing precision in small-scale applications.

By integrating precise speed control, position control, torque control, feedback mechanisms, and advanced control algorithms, the control system of micro gear motors enables precise and accurate operation in small-scale applications. This precision is crucial for tasks that require fine movements, tight tolerances, or intricate positioning, such as robotics, automation, medical devices, and miniature mechanisms.

brushless motor

What are micro gear motors, and how do they differ from standard-sized gear motors?

Micro gear motors are compact and lightweight motor units that combine a small electric motor with a gear mechanism. They are designed to provide precise and controlled motion in applications where space is limited and weight reduction is crucial. Here’s how micro gear motors differ from standard-sized gear motors:

1. Size and Weight:

The most apparent difference between micro gear motors and standard-sized gear motors is their size and weight. Micro gear motors are significantly smaller and lighter than standard-sized gear motors. They are typically designed to fit in tight spaces or applications where size and weight constraints are critical, such as miniature robots, drones, or portable devices.

2. Power and Torque Output:

Due to their smaller size, micro gear motors generally have lower power and torque output compared to standard-sized gear motors. They are optimized for applications that require precise and low-power motion, rather than heavy-duty or high-torque operations. Micro gear motors are commonly used in applications such as micro robotics, medical devices, or small-scale automation systems.

3. Gearing Ratio:

The gearing ratio of micro gear motors is often higher compared to standard-sized gear motors. This means that the gear mechanism in micro gear motors provides a greater reduction in rotational speed and an increase in torque. The higher gearing ratio allows micro gear motors to deliver more torque output relative to their small motor size, enabling precise motion control in miniature applications.

4. Efficiency and Performance:

Micro gear motors may have slightly lower efficiency and performance compared to standard-sized gear motors. The smaller size and compact design can result in higher power losses and increased heat generation. However, advancements in motor and gear manufacturing technologies have significantly improved the efficiency and performance of micro gear motors, making them suitable for a wide range of applications.

5. Operating Characteristics:

Micro gear motors often exhibit different operating characteristics compared to standard-sized gear motors. They may have lower inertia, faster response times, and reduced backlash in the gear mechanism. These characteristics make micro gear motors suitable for applications requiring precise positioning, quick acceleration, and deceleration, such as miniature robotic arms or camera gimbal systems.

6. Cost:

Micro gear motors generally tend to be more expensive compared to standard-sized gear motors. The smaller size and specialized design of micro gear motors involve higher manufacturing costs. Additionally, the demand for micro gear motors is often driven by niche or specialized applications, which can contribute to their higher price point.

Despite their differences, both micro gear motors and standard-sized gear motors serve specific purposes in different applications. The choice between the two depends on the specific requirements of the application, including available space, weight limitations, power and torque requirements, and the desired level of precision and control.

China supplier High Speed Low Rpm 16mm Micro DC Gear Motor   manufacturer China supplier High Speed Low Rpm 16mm Micro DC Gear Motor   manufacturer
editor by CX 2024-05-09