Product Description
Hydraulic Orbital Motors OMR Omp Omsy Omer Drive Hydraulic
Gear Motor for Drilling Rig
Product Description
Detailed Photos
Product Parameters
Certifications
Packaging & Shipping
Company Profile
HangZhou Chuangdong New Material Technology Co., Ltd. is located in HangZhou City, ZheJiang Province, China. The factory was established in 2008 and specializes in the research and development of planetary transmission technology products. The factory has complete equipment and strong processing capabilities, including boring machines, machining centers, gear shapers, CNC lathes, drilling machines, and other processing equipment. In addition, the inspection and testing equipment is complete, with main inspection methods such as metallographic and physicochemical examination, gear inspection, and finished product loading experiments. The factory has successively developed a series of planetary transmission mechanisms in the fields of lifting machinery, exploration machinery, obstacle clearance machinery, aerial work vehicle machinery , marine machinery, petroleum machinery, and truck mounted cranes. At present, our company’s main products include 8-100 ton hoisting and slewing mechanisms for truck cranes, 16-100 ton walking mechanisms for crawler cranes, 18-30 meter hoisting and slewing mechanisms for aerial work vehicles, 6-25 ton hydraulic winches and slewing mechanisms for truck mounted cranes, and 1.5-30 ton IYJ series hydraulic winches widely used in obstacle clearing machinery, marine machinery, and petroleum machinery. The company actively cooperates with various main engine manufacturers to develop products, and also cooperates with ZheJiang Machinery Design Institute, ZheJiang University, HangZhou University of Technology and other universities to develop a series of refined and new products, which have won recognition from the vast market.
FAQ
Q: Are you trading company or manufacturer ?
A: We are factory, established in 1998.
Q: What is your terms of payment?
A: T/T 30% in advance, 70% see the B/L copy.
100% Irrevocable LC
Q: What is your terms of delivery?
A: FOB, CFR ,CIF, DDU or as your requirement
Q:Do you supply customized service?
A: Sure! We are manufacturer, and we have our own engineer group. They can work out customized design according to your special
requirement.
Q: How about your delivery time?
A: Generally it will take 3 to 25 days after receiving your advance payment. The specific delivery time depends on your purchase
quantity.
Q: How about package?
A: Wooden box conforming to export standards.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | GS, RoHS, CE, ISO9001 |
---|---|
Excitation Mode: | Excited |
Power Rating: | 1500W |
Casing Protection: | Protection Type |
Number of Poles: | 12 |
Speed: | High Speed |
Samples: |
US$ 100/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Can gear motors be used in robotics, and if so, what are some notable applications?
Yes, gear motors are widely used in robotics due to their ability to provide torque, precise control, and compact size. They play a crucial role in various robotic applications, enabling the movement, manipulation, and control of robotic systems. Here are some notable applications of gear motors in robotics:
1. Robotic Arm Manipulation:
Gear motors are commonly used in robotic arms to provide precise and controlled movement. They enable the articulation of the arm’s joints, allowing the robot to reach different positions and orientations. Gear motors with high torque capabilities are essential for lifting, rotating, and manipulating objects with varying weights and sizes.
2. Mobile Robots:
Gear motors are employed in mobile robots, including wheeled robots and legged robots, to drive their locomotion. They provide the necessary torque and control for the robot to move, turn, and navigate in different environments. Gear motors with appropriate gear ratios ensure the robot’s mobility, stability, and maneuverability.
3. Robotic Grippers and End Effectors:
Gear motors are used in robotic grippers and end effectors to control the opening, closing, and gripping force. By integrating gear motors into the gripper mechanism, robots can grasp and manipulate objects of various shapes, sizes, and weights. The gear motors enable precise control over the gripping action, allowing the robot to handle delicate or fragile objects with care.
4. Autonomous Drones and UAVs:
Gear motors are utilized in the propulsion systems of autonomous drones and unmanned aerial vehicles (UAVs). They drive the propellers or rotors, providing the necessary thrust and control for the drone’s flight. Gear motors with high power-to-weight ratios, efficient energy conversion, and precise speed control are crucial for achieving stable and maneuverable flight in drones.
5. Humanoid Robots:
Gear motors are integral to the movement and functionality of humanoid robots. They are used in robotic joints, such as hips, knees, and shoulders, to enable human-like movements. Gear motors with appropriate torque and speed capabilities allow humanoid robots to walk, run, climb stairs, and perform complex motions resembling human actions.
6. Robotic Exoskeletons:
Gear motors play a vital role in robotic exoskeletons, which are wearable robotic devices designed to augment human strength and assist in physical tasks. Gear motors are used in the exoskeleton’s joints and actuators, providing the necessary torque and control to enhance human abilities. They enable users to perform tasks with reduced effort, assist in rehabilitation, or provide support in physically demanding environments.
These are just a few notable applications of gear motors in robotics. Their versatility, torque capabilities, precise control, and compact size make them indispensable components in various robotic systems. Gear motors enable robots to perform complex tasks, move with agility, interact with the environment, and assist humans in a wide range of applications, from industrial automation to healthcare and exploration.
What is the significance of gear reduction in gear motors, and how does it affect efficiency?
Gear reduction plays a significant role in gear motors as it enables the motor to deliver higher torque while reducing the output speed. This feature has several important implications for gear motors, including enhanced power transmission, improved control, and potential trade-offs in terms of efficiency. Here’s a detailed explanation of the significance of gear reduction in gear motors and its effect on efficiency:
Significance of Gear Reduction:
1. Increased Torque: Gear reduction allows gear motors to generate higher torque output compared to a motor without gears. By reducing the rotational speed at the output shaft, gear reduction increases the mechanical advantage of the system. This increased torque is beneficial in applications that require high torque to overcome resistance, such as lifting heavy loads or driving machinery with high inertia.
2. Improved Control: Gear reduction enhances the control and precision of gear motors. By reducing the speed, gear reduction allows for finer control over the motor’s rotational movement. This is particularly important in applications that require precise positioning or accurate speed control. The gear reduction mechanism enables gear motors to achieve smoother and more controlled movements, reducing the risk of overshooting or undershooting the desired position.
3. Load Matching: Gear reduction helps match the motor’s power characteristics to the load requirements. Different applications have varying torque and speed requirements. Gear reduction allows the gear motor to achieve a better match between the motor’s power output and the specific requirements of the load. It enables the motor to operate closer to its peak efficiency by optimizing the torque-speed trade-off.
Effect on Efficiency:
While gear reduction offers several advantages, it can also affect the efficiency of gear motors. Here’s how gear reduction impacts efficiency:
1. Mechanical Efficiency: The gear reduction process introduces mechanical components such as gears, bearings, and lubrication systems. These components introduce additional friction and mechanical losses into the system. As a result, some energy is lost in the form of heat during the gear reduction process. The efficiency of the gear motor is influenced by the quality of the gears, the lubrication used, and the overall design of the gear system. Well-designed and properly maintained gear systems can minimize these losses and optimize mechanical efficiency.
2. System Efficiency: Gear reduction affects the overall system efficiency by impacting the motor’s electrical efficiency. In gear motors, the motor typically operates at higher speeds and lower torques compared to a direct-drive motor. The overall system efficiency takes into account both the electrical efficiency of the motor and the mechanical efficiency of the gear system. While gear reduction can increase the torque output, it also introduces additional losses due to increased mechanical complexity. Therefore, the overall system efficiency may be lower compared to a direct-drive motor for certain applications.
It’s important to note that the efficiency of gear motors is influenced by various factors beyond gear reduction, such as motor design, control systems, and operating conditions. The selection of high-quality gears, proper lubrication, and regular maintenance can help minimize losses and improve efficiency. Additionally, advancements in gear technology, such as the use of precision gears and improved lubricants, can contribute to higher overall efficiency in gear motors.
In summary, gear reduction is significant in gear motors as it provides increased torque, improved control, and better load matching. However, gear reduction can introduce mechanical losses and affect the overall efficiency of the system. Proper design, maintenance, and consideration of application requirements are essential to optimize the balance between torque, speed, and efficiency in gear motors.
Can you explain the advantages of using gear motors in various mechanical systems?
Gear motors offer several advantages when utilized in various mechanical systems. Their unique characteristics make them well-suited for applications that require controlled power transmission, precise speed control, and torque amplification. Here’s a detailed explanation of the advantages of using gear motors:
1. Torque Amplification:
One of the key advantages of gear motors is their ability to amplify torque. By using different gear ratios, gear motors can increase or decrease the output torque from the motor. This torque amplification is crucial in applications that require high torque output, such as lifting heavy loads or operating machinery with high resistance. Gear motors allow for efficient power transmission, enabling the system to handle demanding tasks effectively.
2. Speed Control:
Gear motors provide precise speed control, allowing for accurate and controlled movement in mechanical systems. By selecting the appropriate gear ratio, the rotational speed of the output shaft can be adjusted to match the requirements of the application. This speed control capability ensures that the mechanical system operates at the desired speed, whether it needs to be fast or slow. Gear motors are commonly used in applications such as conveyors, robotics, and automated machinery, where precise speed control is essential.
3. Directional Control:
Another advantage of gear motors is their ability to control the rotational direction of the output shaft. By using different types of gears, such as spur gears, bevel gears, or worm gears, the direction of rotation can be easily changed. This directional control is beneficial in applications that require bidirectional movement, such as in actuators, robotic arms, and conveyors. Gear motors offer reliable and efficient directional control, contributing to the versatility and functionality of mechanical systems.
4. Efficiency and Power Transmission:
Gear motors are known for their high efficiency in power transmission. The gear system helps distribute the load across multiple gears, reducing the strain on individual components and minimizing power losses. This efficient power transmission ensures that the mechanical system operates with optimal energy utilization and minimizes wasted power. Gear motors are designed to provide reliable and consistent power transmission, resulting in improved overall system efficiency.
5. Compact and Space-Saving Design:
Gear motors are compact in size and offer a space-saving solution for mechanical systems. By integrating the motor and gear system into a single unit, gear motors eliminate the need for additional components and reduce the overall footprint of the system. This compact design is especially beneficial in applications with limited space constraints, allowing for more efficient use of available space while still delivering the necessary power and functionality.
6. Durability and Reliability:
Gear motors are designed to be robust and durable, capable of withstanding demanding operating conditions. The gear system helps distribute the load, reducing the stress on individual gears and increasing overall durability. Additionally, gear motors are often constructed with high-quality materials and undergo rigorous testing to ensure reliability and longevity. This makes gear motors well-suited for continuous operation in industrial and commercial applications, where reliability is crucial.
By leveraging the advantages of torque amplification, speed control, directional control, efficiency, compact design, durability, and reliability, gear motors provide a reliable and efficient solution for various mechanical systems. They are widely used in industries such as robotics, automation, manufacturing, automotive, and many others, where precise and controlled mechanical power transmission is essential.
editor by CX 2024-05-15
China manufacturer Micro DC Motor Electric Drive High Speed Electromagnetic Gear High Quality Phase Scooters Elevator Shaft Engine Drive Best Stepper Synchronous Motors with high quality
Product Description
Micro DC Motor Electric Drive High Speed Electromagnetic Gear High Quality Phase Scooters Elevator Shaft Engine Drive Best Stepper Synchronous Motors
micro dc motor
Micro motor features
The main difference between our DC micro motors and conventional DC motors is in the rotor. The rotor doesn’t have an iron primary but consists of a self-assisting skew-wound copper winding. This featherweight rotor comes with an extremely low minute of inertia, and it rotates without cogging. The effect is the excellent dynamics of our motors. For low power micro motors, commutation systems using precious metals will be the optimum solution because of their low contact level of resistance.
Our precious steel commutated motors range in size from just 6 mm to 22 mm in diameter.
Micro motor benefits
Ideal for battery operated devices
No cogging
Incredibly low current consumption – low starting voltage
Highly dynamic performance due to a low inertia, low inductance winding
Light and compact
Precise speed control
Simple to control due to the linear performance characteristics
Application of Micro DC Motor
Micro DC motors are a type of electric motor that is typically smaller than 100 watts. They are characterized by their small size, low weight, and high efficiency. Micro DC motors are used in a wide variety of applications, including:
- Automotive: Micro DC motors are used in a variety of automotive applications, such as power windows, power seats, and sunroofs.
- Consumer electronics: Micro DC motors are used in a variety of consumer electronics applications, such as electric shavers, toothbrushes, and fans.
- Industrial: Micro DC motors are used in a variety of industrial applications, such as robotics, automation, and machine tools.
- Medical: Micro DC motors are used in various medical applications, such as pacemakers, insulin pumps, and surgical instruments.
Micro DC motors are a versatile type of motor that can be used in various applications. They are a reliable and efficient way to convert electrical energy into mechanical energy.
Here are some of the benefits of using micro DC motors:
- Small size: Micro DC motors are typically smaller than 100 watts, which makes them ideal for applications where space is limited.
- Low weight: Micro DC motors are lightweight, which makes them easy to transport and install.
- High efficiency: Micro DC motors are highly efficient, which means they can produce much power for their size.
- Low noise: Micro DC motors are typically tranquil, which makes them ideal for applications where noise is a concern.
- Long life: Micro DC motors can have a long service life, which means they can save you money in the long run.
If you are looking for a reliable and efficient way to convert electrical energy into mechanical energy, a micro DC motor is a good option. They are available in various sizes and power ratings, and they can be customized to meet the specific needs of your application.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industrial |
---|---|
Speed: | High Speed |
Number of Stator: | Three-Phase |
Function: | Driving, Control |
Casing Protection: | Open Type |
Number of Poles: | 6 |
Samples: |
US$ 9999/Piece
1 Piece(Min.Order) | |
---|
Can micro gear motors be customized for specific applications, and how is this achieved?
Yes, micro gear motors can be customized to meet the specific requirements of different applications. Customization allows for the optimization of motor performance, size, and features to best suit the intended use. Here’s how customization of micro gear motors is achieved:
- Motor Sizing: The customization process begins with determining the appropriate motor size for the application. Factors such as required torque, speed, power consumption, and physical dimensions are considered to select a motor that can deliver the desired performance within the constraints of the application.
- Gear Ratio Selection: The gear ratio determines the relationship between the motor’s speed and the output shaft’s speed. By selecting different gear ratios, the torque and speed characteristics of the micro gear motor can be tailored to match the specific requirements of the application. Higher gear ratios provide more torque at the expense of speed, while lower gear ratios offer higher speed at the expense of torque.
- Mounting and Integration: Micro gear motors can be customized to facilitate easy integration into the target system or device. Mounting options, such as flanges or brackets, can be designed to ensure secure attachment. Additionally, custom shaft configurations, connectors, and wiring options can be implemented to simplify the motor’s integration into the overall system.
- Environmental Considerations: Customization may involve adapting the micro gear motor to operate in specific environmental conditions. For example, if the motor will be exposed to moisture, dust, or extreme temperatures, protective measures such as sealing, specialized coatings, or thermal management solutions can be incorporated into the motor’s design.
- Control and Feedback: In some applications, customization may involve integrating specific control and feedback mechanisms into the micro gear motor. This can include position sensors, encoders, or communication interfaces that enable precise control, feedback, and integration with other system components or devices.
- Specialized Materials and Components: Custom micro gear motors can utilize specialized materials and components to meet unique application requirements. This may involve using specific gear materials, bearings, or insulation materials that offer enhanced performance, durability, or resistance to certain environmental factors.
- Performance Optimization: Customization allows for fine-tuning the micro gear motor’s performance to achieve optimal efficiency, power output, or response characteristics for the specific application. This can involve adjusting motor parameters, control algorithms, or utilizing advanced motor technologies to meet specific performance goals.
Overall, customization of micro gear motors is achieved through a combination of careful motor selection, design modifications, incorporation of specialized features and materials, and optimization of performance parameters. Collaborating with motor manufacturers or engineering firms with expertise in micro gear motors can help tailor the motor to the exact requirements of the application.
Can you provide examples of innovative uses of micro gear motors in modern technology?
Micro gear motors have found innovative applications across various modern technologies. Here are some examples:
- Drones: Micro gear motors are commonly used in drones to drive the propellers and control the flight. Their compact size, lightweight design, and precise control capabilities make them ideal for achieving stable and agile flight maneuvers.
- Robotics: Micro gear motors play a crucial role in robotics, powering the joints and actuators of robotic arms, grippers, and humanoid robots. Their precise control, compact form factor, and high torque-to-size ratio enable robots to perform delicate and precise manipulations in industrial automation, medical procedures, and research applications.
- Automotive Systems: Micro gear motors are used in various automotive systems, such as power windows, door locks, and seat adjustments. Their small size and high torque allow for efficient and reliable operation of these mechanisms within the limited space available in vehicles.
- Medical Devices: Micro gear motors are utilized in medical devices and equipment, including surgical robots, prosthetics, insulin pumps, and lab automation systems. Their precise control, compact size, and low power consumption make them suitable for applications requiring fine movements, accurate dosing, and miniaturization.
- Consumer Electronics: Micro gear motors are incorporated into numerous consumer electronic devices. They can be found in cameras for lens movement and autofocus, wearable devices for haptic feedback and vibration, and home appliances for precise control of valves, fans, and robotic components.
- Smart Home Systems: Micro gear motors are employed in smart home systems to control various functions, such as motorized curtains, blinds, and awnings. Their precise control, quiet operation, and compatibility with automation systems allow for convenient and customizable control of these home features.
These examples represent just a few of the many innovative uses of micro gear motors in modern technology. Their versatility, precision, and compact design make them valuable components in a wide range of applications, contributing to advancements in automation, robotics, electronics, and beyond.
What types of gears are typically employed in micro gear motors for efficient power transmission?
Micro gear motors utilize various types of gears to achieve efficient power transmission. Here are some commonly employed gear types in micro gear motors:
1. Spur Gears:
Spur gears are the most basic and commonly used gears in micro gear motors. They have straight teeth and are mounted on parallel shafts. Spur gears provide efficient power transmission with low noise and high efficiency. They are suitable for applications that require high-speed rotation and moderate torque requirements.
2. Helical Gears:
Helical gears are similar to spur gears but have angled teeth. The angled teeth allow for smoother and quieter operation compared to spur gears. Helical gears provide higher torque transmission capabilities and are commonly used in micro gear motors where reducing noise and vibration is important, such as in precision instruments or small appliances.
3. Planetary Gears:
Planetary gears, also known as epicyclic gears, are compact gear systems that consist of a central gear (sun gear), multiple surrounding gears (planet gears), and an outer ring gear (ring gear). Planetary gears offer high torque transmission capabilities in a compact design. They are commonly used in micro gear motors where a high gear ratio and torque multiplication are required, such as in robotics or automation systems.
4. Worm Gears:
Worm gears consist of a worm (a screw-like gear) and a mating gear called a worm wheel. Worm gears provide a high gear reduction ratio and are suitable for applications that require high torque output and low-speed rotation. They are commonly used in micro gear motors for applications such as valve actuators, conveyor systems, or precision positioning devices.
5. Bevel Gears:
Bevel gears have teeth that are cut on conical surfaces and are used to transmit power between intersecting shafts. They are commonly employed in micro gear motors that require changes in direction or angle of power transmission. Bevel gears provide efficient power transfer and can accommodate a wide range of speed and torque requirements.
6. Hypoid Gears:
Hypoid gears are similar to bevel gears but have offset axes. They are used in micro gear motors that require high torque transmission at right angles. Hypoid gears offer efficient power transmission with reduced noise and vibration, making them suitable for applications that require compact and quiet operation.
7. Rack and Pinion:
Rack and pinion gears consist of a linear gear (rack) meshing with a rotational gear (pinion). They are commonly used in micro gear motors for linear motion applications, such as in CNC machines, 3D printers, or small-scale automation systems. Rack and pinion gears provide efficient and precise linear motion control.
These are some of the common types of gears employed in micro gear motors for efficient power transmission. The choice of gear type depends on the specific requirements of the application, including torque, speed, noise level, and space constraints.
editor by CX 2024-05-15
China Best Sales Micro DC Motor Electric Drive High Speed Electromagnetic Gear High Quality Phase Scooters Elevator Shaft Engine Drive Best Stepper Synchronous Motors vacuum pump diy
Product Description
Micro DC Motor Electric Drive High Speed Electromagnetic Gear High Quality Phase Scooters Elevator Shaft Engine Drive Best Stepper Synchronous Motors
micro dc motor
Micro motor features
The main difference between our DC micro motors and conventional DC motors is in the rotor. The rotor doesn’t have an iron primary but consists of a self-assisting skew-wound copper winding. This featherweight rotor comes with an extremely low minute of inertia, and it rotates without cogging. The effect is the excellent dynamics of our motors. For low power micro motors, commutation systems using precious metals will be the optimum solution because of their low contact level of resistance.
Our precious steel commutated motors range in size from just 6 mm to 22 mm in diameter.
Micro motor benefits
Ideal for battery operated devices
No cogging
Incredibly low current consumption – low starting voltage
Highly dynamic performance due to a low inertia, low inductance winding
Light and compact
Precise speed control
Simple to control due to the linear performance characteristics
Application of Micro DC Motor
Micro DC motors are a type of electric motor that is typically smaller than 100 watts. They are characterized by their small size, low weight, and high efficiency. Micro DC motors are used in a wide variety of applications, including:
- Automotive: Micro DC motors are used in a variety of automotive applications, such as power windows, power seats, and sunroofs.
- Consumer electronics: Micro DC motors are used in a variety of consumer electronics applications, such as electric shavers, toothbrushes, and fans.
- Industrial: Micro DC motors are used in a variety of industrial applications, such as robotics, automation, and machine tools.
- Medical: Micro DC motors are used in various medical applications, such as pacemakers, insulin pumps, and surgical instruments.
Micro DC motors are a versatile type of motor that can be used in various applications. They are a reliable and efficient way to convert electrical energy into mechanical energy.
Here are some of the benefits of using micro DC motors:
- Small size: Micro DC motors are typically smaller than 100 watts, which makes them ideal for applications where space is limited.
- Low weight: Micro DC motors are lightweight, which makes them easy to transport and install.
- High efficiency: Micro DC motors are highly efficient, which means they can produce much power for their size.
- Low noise: Micro DC motors are typically tranquil, which makes them ideal for applications where noise is a concern.
- Long life: Micro DC motors can have a long service life, which means they can save you money in the long run.
If you are looking for a reliable and efficient way to convert electrical energy into mechanical energy, a micro DC motor is a good option. They are available in various sizes and power ratings, and they can be customized to meet the specific needs of your application.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industrial |
---|---|
Speed: | High Speed |
Number of Stator: | Three-Phase |
Function: | Driving, Control |
Casing Protection: | Open Type |
Number of Poles: | 6 |
Samples: |
US$ 9999/Piece
1 Piece(Min.Order) | |
---|
Where can individuals find reputable suppliers or manufacturers of micro gear motors?
Individuals looking for reputable suppliers or manufacturers of micro gear motors can consider the following reliable sources:
- Online Directories: Online directories, such as Thomasnet, Alibaba, or GlobalSpec, provide comprehensive listings of suppliers and manufacturers across various industries. These directories often include detailed profiles, product catalogs, and customer reviews, making it easier to evaluate and connect with reputable micro gear motor suppliers.
- Trade Shows and Exhibitions: Attending industry-specific trade shows and exhibitions offers an excellent opportunity to meet and connect with reputable micro gear motor manufacturers and suppliers. These events gather industry professionals, showcase the latest technologies, and provide a platform for networking and establishing business relationships.
- Industry Associations: Industry associations, such as the Robotics Industries Association (RIA) or the National Electrical Manufacturers Association (NEMA), can provide valuable resources and directories of reputable micro gear motor manufacturers and suppliers. These associations often have strict membership criteria, ensuring that listed companies adhere to industry standards and best practices.
- Referrals and Recommendations: Seek referrals or recommendations from colleagues, industry experts, or professionals who have experience working with micro gear motors. Their firsthand experiences can provide insights into reputable manufacturers or suppliers known for their quality products, reliable services, and customer support.
- Online Research and Reviews: Conducting online research allows individuals to explore various manufacturers or suppliers of micro gear motors. Look for websites, online forums, or discussion boards that provide reviews, ratings, or testimonials from customers. Reading unbiased experiences and feedback can help identify reputable companies that consistently deliver high-quality products and excellent customer service.
- Consulting with Industry Experts: Seek advice from industry experts, engineers, or consultants who specialize in micro gear motors. They often have extensive knowledge of the market, industry trends, and reputable manufacturers or suppliers. Consulting with experts can provide valuable insights and guidance in selecting the right supplier for specific requirements.
It is important to conduct due diligence when evaluating suppliers or manufacturers. Consider factors such as their reputation, years of experience in the industry, product quality, certifications, customer support, and delivery capabilities. Request samples, specifications, or references to assess their suitability for the intended application.
By utilizing these sources and conducting thorough research, individuals can find reputable suppliers or manufacturers of micro gear motors that meet their specific needs and ensure reliable and high-quality products.
What challenges or limitations might be associated with the use of micro gear motors?
Micro gear motors, despite their many advantages, also come with certain challenges and limitations. Here are some of them:
- Size and Space Constraints: Micro gear motors are designed to be compact and small in size, which can be advantageous in many applications. However, the small size can also limit the power output and torque capabilities of the motor, making them unsuitable for applications that require high power or high torque.
- Heat Dissipation: Micro gear motors can generate heat during operation, especially when subjected to high loads or continuous use. The compact size and limited surface area of the motor can make heat dissipation challenging, potentially leading to overheating and reduced performance or lifespan. Proper heat dissipation strategies such as cooling fans or heat sinks may be required in certain applications.
- Noise and Vibration: Due to the mechanical nature of gear systems, micro gear motors can produce noise and vibration during operation. The noise and vibration levels can vary depending on the quality of the gears and the design of the motor. In applications where noise or vibration is a concern, additional measures such as noise-reducing enclosures or vibration dampening techniques may be necessary.
- Limited Lifespan: Micro gear motors, like any mechanical system, have a limited lifespan. The continuous operation, high loads, and friction within the gear system can contribute to wear and tear over time. Regular maintenance, lubrication, and periodic replacement of worn-out components may be required to ensure optimal performance and longevity.
- Cost: Micro gear motors, especially those with advanced features or high precision, can be relatively expensive compared to other motor types. The cost of manufacturing, materials, and specialized components can contribute to the overall cost. Additionally, the need for additional accessories such as controllers or drivers may further increase the cost of implementing micro gear motors in certain applications.
Despite these challenges and limitations, micro gear motors offer unique advantages and are suitable for a wide range of applications. Understanding the specific requirements and limitations of the motor can help in selecting the appropriate type and optimizing its performance in a given application.
What types of gears are typically employed in micro gear motors for efficient power transmission?
Micro gear motors utilize various types of gears to achieve efficient power transmission. Here are some commonly employed gear types in micro gear motors:
1. Spur Gears:
Spur gears are the most basic and commonly used gears in micro gear motors. They have straight teeth and are mounted on parallel shafts. Spur gears provide efficient power transmission with low noise and high efficiency. They are suitable for applications that require high-speed rotation and moderate torque requirements.
2. Helical Gears:
Helical gears are similar to spur gears but have angled teeth. The angled teeth allow for smoother and quieter operation compared to spur gears. Helical gears provide higher torque transmission capabilities and are commonly used in micro gear motors where reducing noise and vibration is important, such as in precision instruments or small appliances.
3. Planetary Gears:
Planetary gears, also known as epicyclic gears, are compact gear systems that consist of a central gear (sun gear), multiple surrounding gears (planet gears), and an outer ring gear (ring gear). Planetary gears offer high torque transmission capabilities in a compact design. They are commonly used in micro gear motors where a high gear ratio and torque multiplication are required, such as in robotics or automation systems.
4. Worm Gears:
Worm gears consist of a worm (a screw-like gear) and a mating gear called a worm wheel. Worm gears provide a high gear reduction ratio and are suitable for applications that require high torque output and low-speed rotation. They are commonly used in micro gear motors for applications such as valve actuators, conveyor systems, or precision positioning devices.
5. Bevel Gears:
Bevel gears have teeth that are cut on conical surfaces and are used to transmit power between intersecting shafts. They are commonly employed in micro gear motors that require changes in direction or angle of power transmission. Bevel gears provide efficient power transfer and can accommodate a wide range of speed and torque requirements.
6. Hypoid Gears:
Hypoid gears are similar to bevel gears but have offset axes. They are used in micro gear motors that require high torque transmission at right angles. Hypoid gears offer efficient power transmission with reduced noise and vibration, making them suitable for applications that require compact and quiet operation.
7. Rack and Pinion:
Rack and pinion gears consist of a linear gear (rack) meshing with a rotational gear (pinion). They are commonly used in micro gear motors for linear motion applications, such as in CNC machines, 3D printers, or small-scale automation systems. Rack and pinion gears provide efficient and precise linear motion control.
These are some of the common types of gears employed in micro gear motors for efficient power transmission. The choice of gear type depends on the specific requirements of the application, including torque, speed, noise level, and space constraints.
editor by CX 2024-05-14
China manufacturer Stainless Steel Micro Magnetic Drive Gear Pump Stepper Motor vacuum pump diy
Product Description
Model Description
Product Instruction:
Stepping motor is used to drive this gear pump. It can realize the open-loop control, No need to wait the feedback signal, then the angle and speed control of the stepper motor can be realized by the number and frequency of the input pulses of the driver signal input. It is suitable for short distance, high precision and frequent operation.
Attentions:
1.400 Mesh filter shall be installed at the inlet of gear pump.
2.Before using, squeeze in a small amount of medium to lubricate the gear from the gear pump inlet.
Product Size:
Product Parameters:
The values in this table are for reference only.
Product characteristics
Test Medium: Water
1.Smooth transmission, no pulse, accurate measurement;
2.Use magnetic drive structure, static seal, truly achieve zero leakage;
3.Diversified drive, wide application in the industry, complete models;
4.High efficiency and energy saving, easy maintenance, low installation cost and long service life.
Attentions:
It cannot be used to transport fluids with hard particles;
Filter to be installed at inlet.
Remarks:
OEM service are avaiable according to your request.
The specifications are only for reference, for details checking, please feel free to contact us.
Applications:
Industrial machinery and equipment | Water treatment | Food and cosmetics |
Inkjet printing/painting | Mask making | Food and Beverage filling |
Oil transportation | Booster pressure | Filling of perfume cosmetics |
Sand mill/Grinding | Circulating cooling | Quantitative Transport |
Logistics:
Company Profile
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 12 Months |
---|---|
Warranty: | 12 Months |
Mesh Form: | External Engaged |
Tooth Flank: | Straight Tooth |
Tooth Curve: | Involute |
Power: | Magnetic Drive by Stepper Motor |
Customization: |
Available
|
|
---|
Where can individuals find reputable suppliers or manufacturers of micro gear motors?
Individuals looking for reputable suppliers or manufacturers of micro gear motors can consider the following reliable sources:
- Online Directories: Online directories, such as Thomasnet, Alibaba, or GlobalSpec, provide comprehensive listings of suppliers and manufacturers across various industries. These directories often include detailed profiles, product catalogs, and customer reviews, making it easier to evaluate and connect with reputable micro gear motor suppliers.
- Trade Shows and Exhibitions: Attending industry-specific trade shows and exhibitions offers an excellent opportunity to meet and connect with reputable micro gear motor manufacturers and suppliers. These events gather industry professionals, showcase the latest technologies, and provide a platform for networking and establishing business relationships.
- Industry Associations: Industry associations, such as the Robotics Industries Association (RIA) or the National Electrical Manufacturers Association (NEMA), can provide valuable resources and directories of reputable micro gear motor manufacturers and suppliers. These associations often have strict membership criteria, ensuring that listed companies adhere to industry standards and best practices.
- Referrals and Recommendations: Seek referrals or recommendations from colleagues, industry experts, or professionals who have experience working with micro gear motors. Their firsthand experiences can provide insights into reputable manufacturers or suppliers known for their quality products, reliable services, and customer support.
- Online Research and Reviews: Conducting online research allows individuals to explore various manufacturers or suppliers of micro gear motors. Look for websites, online forums, or discussion boards that provide reviews, ratings, or testimonials from customers. Reading unbiased experiences and feedback can help identify reputable companies that consistently deliver high-quality products and excellent customer service.
- Consulting with Industry Experts: Seek advice from industry experts, engineers, or consultants who specialize in micro gear motors. They often have extensive knowledge of the market, industry trends, and reputable manufacturers or suppliers. Consulting with experts can provide valuable insights and guidance in selecting the right supplier for specific requirements.
It is important to conduct due diligence when evaluating suppliers or manufacturers. Consider factors such as their reputation, years of experience in the industry, product quality, certifications, customer support, and delivery capabilities. Request samples, specifications, or references to assess their suitability for the intended application.
By utilizing these sources and conducting thorough research, individuals can find reputable suppliers or manufacturers of micro gear motors that meet their specific needs and ensure reliable and high-quality products.
How does the control system of micro gear motors contribute to precision in small-scale applications?
The control system of micro gear motors plays a crucial role in achieving precision in small-scale applications. Here’s how it contributes to precision:
- Speed Control: The control system allows precise regulation of the motor’s speed, enabling accurate and consistent movement in small-scale applications. By adjusting the voltage or current supplied to the motor, the control system can control the rotational speed of the motor shaft, ensuring precise motion according to the application’s requirements.
- Position Control: Micro gear motors with advanced control systems, such as stepper motors, offer precise position control. The control system sends specific signals or pulses to the motor, causing it to move in discrete steps or increments. This allows for accurate positioning in small-scale applications where precise movements and alignment are critical. The control system can also maintain the motor’s position without the need for external feedback devices, enhancing precision and simplifying the overall system.
- Torque Control: In some applications, maintaining consistent torque is essential for precision. The control system of micro gear motors can regulate the torque output, ensuring that the motor delivers the required amount of force accurately and consistently. This is particularly important in tasks that involve delicate or precise movements, such as robotics, where excessive torque can cause damage or imprecise results.
- Feedback Mechanisms: Many micro gear motors incorporate feedback mechanisms into their control systems. These mechanisms provide information about the motor’s performance, such as speed, position, or current, and allow the control system to make adjustments in real-time. Feedback mechanisms, such as encoders or sensors, enable closed-loop control, where the control system continuously monitors and adjusts the motor’s operation to maintain precision and accuracy.
- Control Algorithms: The control system of micro gear motors often incorporates sophisticated control algorithms that optimize performance and precision. These algorithms can include proportional-integral-derivative (PID) controllers, adaptive control, or advanced motion control algorithms. By analyzing the input signals, sensory feedback, and desired output, these algorithms can adjust the motor’s operation to minimize errors, disturbances, or deviations from the desired motion, thus enhancing precision in small-scale applications.
By integrating precise speed control, position control, torque control, feedback mechanisms, and advanced control algorithms, the control system of micro gear motors enables precise and accurate operation in small-scale applications. This precision is crucial for tasks that require fine movements, tight tolerances, or intricate positioning, such as robotics, automation, medical devices, and miniature mechanisms.
How does the gear ratio in micro gear motors impact their torque and speed characteristics?
The gear ratio in micro gear motors plays a crucial role in determining their torque and speed characteristics. Here’s a detailed explanation of how the gear ratio affects these attributes:
1. Torque:
The gear ratio directly influences the torque output of a micro gear motor. A higher gear ratio corresponds to a higher torque output, while a lower gear ratio results in lower torque output. The gear mechanism in micro gear motors provides torque multiplication, allowing the motor to generate higher torque than its inherent capability. This is beneficial in applications that require higher force or torque, such as moving heavy loads or overcoming resistance. By choosing an appropriate gear ratio, micro gear motors can deliver the required torque for specific tasks while maintaining a compact size.
2. Speed:
Conversely, the gear ratio inversely affects the speed of a micro gear motor. A higher gear ratio leads to a lower output speed, while a lower gear ratio results in a higher output speed. This is because the gear reduction mechanism slows down the rotational speed of the motor output shaft. Micro gear motors with high gear ratios are commonly used in applications that require precise and slow movement, such as robotics or positioning systems. On the other hand, micro gear motors with lower gear ratios are suitable for applications that demand higher rotational speeds, such as in fan or blower systems.
3. Trade-off:
It’s important to note that there is a trade-off between torque and speed in micro gear motors. As the gear ratio increases to provide higher torque, the output speed decreases. Conversely, if the gear ratio is decreased to increase the speed, the torque output decreases. This trade-off is a result of the mechanical advantage provided by the gear system. Designers must carefully consider the requirements of the specific application to determine the optimal gear ratio that balances torque and speed according to the desired performance.
4. Efficiency:
The gear ratio also influences the overall efficiency of the micro gear motor. While gears provide torque multiplication, they can introduce mechanical losses due to friction and backlash. Higher gear ratios generally result in lower efficiency due to increased friction losses. It’s important to select gear systems with high-quality materials, precise manufacturing, and proper lubrication to minimize these losses and maximize the overall efficiency of the micro gear motor.
5. Backlash:
Backlash refers to the slight play or movement between the teeth of gears. It is a common characteristic in gear systems and can impact the precision and responsiveness of the micro gear motor. The gear ratio can affect the amount of backlash present in the system. Higher gear ratios may exhibit more backlash, which can introduce inaccuracies in motion control applications. Design considerations should be made to minimize backlash, such as using gears with tighter tolerances or incorporating anti-backlash mechanisms.
In summary, the gear ratio in micro gear motors has a direct impact on their torque and speed characteristics. Higher gear ratios provide increased torque output but lower speed, while lower gear ratios result in higher speed but lower torque. Designers must carefully select the appropriate gear ratio to meet the specific requirements of the application, considering factors such as desired torque, speed, efficiency, and backlash.
editor by CX 2024-04-24
China factory 0.30 Ml/Rev DC 24V Motor Tungsten Steel with Titanium Nitride Coating Micro Magnetic Drive Gear Pump M0.30t57bl120W with Hot selling
Product Description
Product Instruction:
The brushless DC motor is used as the power driving gear pump. The brushless motor driver is configured to realize the motor function control. It has the functions of speed measurement, speed adjustment, CHINAMFG and reverse rotation. It can be connected with the upper computer to realize intelligent control. It is especially suitable for the workplace with frequent start and stop, such as liquid filling. Step motor or servo motor can be selected as driving power.
The gear of the gear pump is made of tungsten steel, and the surface of the pump body is hardened by tin coating, so that the pump can provide excellent pumping performance and longer service life in the application of CHINAMFG liquid (such as pigment paint and pigment ink).
Attentions:
1.400 Mesh filter shall be installed at the inlet of gear pump.
2.Before using, squeeze in a small amount of medium to lubricate the gear from the gear pump inlet.
Product Model Selection Instruction:
Pump Head | Motor | ||||
M | 0.07 | S | 57 | BL | 120W |
“M” means by magnetic drive | Pump revolution, Unit: ml/rev, note 1 for details | Pump body materials, note 2 details | Pump head spec, Unit: mm, note 3 | Motor Type, Note 4 | Motor Power |
Notes:
1. Pump output volume: 0.07,0.15,0.3,0.6,0.9,1.5,3.0,6.,12.0 (Unit: ml/rev)
2.”S” means pump body material is 316L, gear and shaft sleeve are PEEK, seal with PTFE, the rest others are 316L.
“T” means pump body material is 316L, gear and shaft are Tungsten steel, shaft sleeve is PEEK, seal with PTFE, the rest others are 316L.
“P” means pump body material is PPS, gear materail and shaft sleeve are PEEK, seal with FFKM, the rest others are Hastelloy.
“H” means the pump body materials is Hastelloy, the gear and shaft sleeve is PEEK, the seal materials is PTFE, the rest of the pump flow material is Hastelloy, the appearance and size is same as 316L pump, details product parameters refer to 316L pump head.
3. Pump head range: 57, 72, 88. Model 57 has 0.07,0.15,0.3,0.6,0.9,1.5 ml/rev;Model 72 has 1.5,3.0 ml/rev;Model 88 has 3.0,6.0,12.0 ml/rev.
4.Motor:HS: Stepper Motor; BL: External drive DC brushless; BLa:Built-in drive DC brushless; BLb:Built-in drive DC brushless (potentiometer)DC:Brush motor; Y:Common asynchronous motor; YB:Explosion proof asynchronous motor; SM:Servo motor YP: General asynchronous frequency conversion YBP: Explosion proof asynchronous frequency conversion, SMP: Servo frequency conversion.
Product Model : M0.30T57BL120W
Product Diagram:
Product Parameters:
Pump Model | MotorType | L1(mm) | L2(mm) | Pressure(bar) | Weight(kg) | Rated Current(A) | Imp.&Exp. Size | Flow Range (L/H) |
M0.15T57 | BL120W | 167.1 | 32.8 | 6 | 1.54 | 6.7 | G1/8 | 2.7~40.5 |
M0.30T57 | 167.1 | 32.8 | 1.54 | 5.4~81 | ||||
M0.60T57 | 171.2 | 36.9 | 1.55 | 10.8~162 |
Pump head parameter | Motor parameter | Motor wiring | |||||
Continuous work pressure | 0.6MPa | Rated voltage | 24V | Red | +24V | Yellow (Thick) | R(U) Phase |
Fluid Viscosity | 0.2-1500cps | Rev. range | 500-4500rpm | Black | 0 | Green (Thick) | S(V) Phase |
Ambient Temperature | -40ºC-110ºC(If the temperature of the conveying medium is over 70 °C, please make a special request.) | Slot and Pole No. | 6 Slot & 4 Pole | Yellow(Thin ) | HALL A(U) | Blue (Thick) | T(W) Phase |
Static sealing | PTFE | Hall mechanical angle | 60° | Green (Thin ) |
HALL B(V) | ||
Pump Body material | SS with Titanium nitride coating | Working System | Continuous or intermittent operation (can be started frequently) | Blue(Thin ) | HALL C(W) | ||
Gear Material | Gear and gear shaft are made of tungsten steel |
The values in this table are for reference only.
Remarks:
OEM service are avaiable according to your request.
The specifications are only for reference, for details checking, please feel free to contact us.
Pump head structure diagram:
1. Inner-hexagon screw*3 5. Pump body 9. Rear cover 13. Countersunk head screw*3
2. Front cover 6. Tef/lon gasket*2 10. O-ring 14. Isolation cover
3. Shaft sleeve*6 7. Driving gear 11. Platen
4. Pin*2 8. Driven gear 12. Internal magnetic steel
Product characteristic diagram:
Product Characteristics:
No pulse, high precision.
the external gear design makes the pump flow relatively unaffected by the system pressure,and the flow output has no pulsation, which can accurately measure the flow, and has strong repeatability.
Stable transmission.
Gear transmission can ensure constant instantaneous transmission ratio.
Zero leakage.
no packing seal or mechanical seal, no wearing parts, using magnetic drive, static seal,truly achieve zero leakage.
Corrosion resistance.
304 / 316L, Hastelloy and engineering plastics can be selected as pump body materials,which can be used in most chemical media.
Efficient and convenient, long service life.
adopt the way of motor direct drive, reduce the vulnerable parts. High efficiency and energy saving, simple maintenance, low installation cost, long service life.
Applicability.
suitable for high differential pressure, high system pressure and wide range of medium viscosity.
long service life.
The magnetic drive design of the non dynamic seal makes the shaft end no longer need the dynamic seal, which ensures the leakage free operation of the pump. The CHINAMFG and stable shaft support can ensure the accurate meshing of the gear when the pump is running at high speed, ensure the smooth operation of the pump, the high accuracy of metering and the long service life of the pump.
Diversified drive mode.
magnetic drive gear metering pump can be directly connected with DC brushless motor,2-pole and 4-pole AC motor without reducer. The flow control of the pump can be realized by the controller of AC, DC, brushless DC and other motors. We can provide a variety of standard driving methods to meet the needs of customers.
A wide range of applications.
magnetic drive gear pump in the design, manufacture and application of a large number of use of magnetic drive, pump and motor technology. It has the advantages of no pulsation, long life and no leakage. These advantages make our products widely used in chemical, medical, laboratory, water treatment, food and other industries.
Applicable conditions:
All kinds of liquids, high precision fluid transportation, high repeatability, continuous small flow without pulsation.
It is used in aviation equipment, aircraft, spacecraft, chemical laboratory, chemical reagent adding, film manufacturing, pharmaceutical machine equipment, various lasers, micro cooling device of sighting instrument,tobacco flavoring adding, inkjet printing machine manufacturing, inkjet printer manufacturing, high-performance color printing machine and other industries.
Industrial machinery and equipment | Water treatment | Food and cosmetics |
Inkjet printing/painting | Mask making | Food and Beverage filling |
Oil transportation | Booster pressure | Filling of perfume cosmetics |
Sand mill/Grinding | Circulating cooling | Quantitative Transport |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Mesh Form: | External Engaged |
---|---|
Tooth Flank: | Skew Tooth |
Tooth Curve: | Involute |
Power: | Electromagnetism |
Type: | Micro Gear Pump |
Applications: | Inkjet Printer/Auto Filling/Sand Mill/Grinding |
Customization: |
Available
|
|
---|
Can micro gear motors be customized for specific applications, and how is this achieved?
Yes, micro gear motors can be customized to meet the specific requirements of different applications. Customization allows for the optimization of motor performance, size, and features to best suit the intended use. Here’s how customization of micro gear motors is achieved:
- Motor Sizing: The customization process begins with determining the appropriate motor size for the application. Factors such as required torque, speed, power consumption, and physical dimensions are considered to select a motor that can deliver the desired performance within the constraints of the application.
- Gear Ratio Selection: The gear ratio determines the relationship between the motor’s speed and the output shaft’s speed. By selecting different gear ratios, the torque and speed characteristics of the micro gear motor can be tailored to match the specific requirements of the application. Higher gear ratios provide more torque at the expense of speed, while lower gear ratios offer higher speed at the expense of torque.
- Mounting and Integration: Micro gear motors can be customized to facilitate easy integration into the target system or device. Mounting options, such as flanges or brackets, can be designed to ensure secure attachment. Additionally, custom shaft configurations, connectors, and wiring options can be implemented to simplify the motor’s integration into the overall system.
- Environmental Considerations: Customization may involve adapting the micro gear motor to operate in specific environmental conditions. For example, if the motor will be exposed to moisture, dust, or extreme temperatures, protective measures such as sealing, specialized coatings, or thermal management solutions can be incorporated into the motor’s design.
- Control and Feedback: In some applications, customization may involve integrating specific control and feedback mechanisms into the micro gear motor. This can include position sensors, encoders, or communication interfaces that enable precise control, feedback, and integration with other system components or devices.
- Specialized Materials and Components: Custom micro gear motors can utilize specialized materials and components to meet unique application requirements. This may involve using specific gear materials, bearings, or insulation materials that offer enhanced performance, durability, or resistance to certain environmental factors.
- Performance Optimization: Customization allows for fine-tuning the micro gear motor’s performance to achieve optimal efficiency, power output, or response characteristics for the specific application. This can involve adjusting motor parameters, control algorithms, or utilizing advanced motor technologies to meet specific performance goals.
Overall, customization of micro gear motors is achieved through a combination of careful motor selection, design modifications, incorporation of specialized features and materials, and optimization of performance parameters. Collaborating with motor manufacturers or engineering firms with expertise in micro gear motors can help tailor the motor to the exact requirements of the application.
What challenges or limitations might be associated with the use of micro gear motors?
Micro gear motors, despite their many advantages, also come with certain challenges and limitations. Here are some of them:
- Size and Space Constraints: Micro gear motors are designed to be compact and small in size, which can be advantageous in many applications. However, the small size can also limit the power output and torque capabilities of the motor, making them unsuitable for applications that require high power or high torque.
- Heat Dissipation: Micro gear motors can generate heat during operation, especially when subjected to high loads or continuous use. The compact size and limited surface area of the motor can make heat dissipation challenging, potentially leading to overheating and reduced performance or lifespan. Proper heat dissipation strategies such as cooling fans or heat sinks may be required in certain applications.
- Noise and Vibration: Due to the mechanical nature of gear systems, micro gear motors can produce noise and vibration during operation. The noise and vibration levels can vary depending on the quality of the gears and the design of the motor. In applications where noise or vibration is a concern, additional measures such as noise-reducing enclosures or vibration dampening techniques may be necessary.
- Limited Lifespan: Micro gear motors, like any mechanical system, have a limited lifespan. The continuous operation, high loads, and friction within the gear system can contribute to wear and tear over time. Regular maintenance, lubrication, and periodic replacement of worn-out components may be required to ensure optimal performance and longevity.
- Cost: Micro gear motors, especially those with advanced features or high precision, can be relatively expensive compared to other motor types. The cost of manufacturing, materials, and specialized components can contribute to the overall cost. Additionally, the need for additional accessories such as controllers or drivers may further increase the cost of implementing micro gear motors in certain applications.
Despite these challenges and limitations, micro gear motors offer unique advantages and are suitable for a wide range of applications. Understanding the specific requirements and limitations of the motor can help in selecting the appropriate type and optimizing its performance in a given application.
In which applications are micro gear motors commonly used due to their compact size?
Micro gear motors find applications in various industries where their compact size is advantageous. Here are some common applications where micro gear motors are commonly used:
1. Micro Robotics:
Micro gear motors are extensively used in micro robotics applications. These motors provide the necessary torque and precision for controlling the movements of miniature robot platforms, robotic arms, grippers, and other robotic components. Their small size allows for intricate and precise motion control in confined spaces.
2. Medical Devices:
In the medical field, micro gear motors are employed in various devices and equipment, including medical robots, surgical instruments, diagnostic devices, and drug delivery systems. Their compact size enables integration into portable and handheld medical devices while ensuring precise and controlled movements for accurate diagnostics and minimally invasive procedures.
3. Automotive Systems:
Micro gear motors are used in automotive systems that require compact and lightweight actuators. They find applications in power windows, door locks, seat adjustment mechanisms, mirror adjustment, and HVAC controls. The small size of micro gear motors allows for efficient utilization of space within the vehicle while providing reliable and precise operation.
4. Consumer Electronics:
Micro gear motors are found in various consumer electronic devices. They are used in camera autofocus mechanisms, zoom controls, robotic toys, smart home devices, and wearable technology. The compact size of micro gear motors enables seamless integration into these devices, providing precise and controlled motion capabilities.
5. Industrial Automation:
In industrial automation applications, micro gear motors are utilized in small-scale machinery, robotics, and automated systems. They are used in conveyor systems, pick-and-place machines, miniature actuators, and precision positioning systems. The small size and high gearing ratio of micro gear motors allow for accurate and repeatable positioning in tight spaces.
6. Aerospace and Defense:
Micro gear motors are employed in aerospace and defense applications, including drones, unmanned aerial vehicles (UAVs), miniature satellites, and guidance systems. Their compact size and lightweight properties are crucial for reducing the overall weight and improving maneuverability in these applications.
7. Scientific and Laboratory Equipment:
Micro gear motors are used in scientific instruments, laboratory equipment, and research devices. They find applications in precision syringe pumps, sample handling systems, microfluidic devices, and motion control mechanisms for optical instruments. The compact size and precise motion control capabilities of micro gear motors support accurate and controlled experimentation and analysis.
8. Industrial and Manufacturing:
In industrial and manufacturing settings, micro gear motors are utilized in small-scale machinery, conveyors, packaging equipment, and assembly systems. They provide compact and efficient motion control for precise material handling, part positioning, and automation processes.
These are just a few examples of the many applications where micro gear motors are commonly used due to their compact size. Their small form factor and precise motion control capabilities make them ideal for applications where space constraints, weight reduction, and accurate motion control are crucial factors.
editor by CX 2024-04-09
China manufacturer Solar Tracker Slewing Drive Actuator Brush DC Gear Motor a/c vacuum pump
Product Description
Product Description
HPS is a leading manufacturer and supplier of planetary gearbox and gear motor in China, Our company covers an area of 6 pcs. Meanwhile, all 6 production lines strictly comply with ISO 9001 and CE to control the quality. wide-range series products have been exported to 30+ countries all over the world.
Besides, we are making great efforts to customize and provide complete solutions to meet different clients’ requirements and market. Our R&D team has 15 years experience in this field, makes our company honored with many invention patents and utility patents, which makes CHINAMFG the most trustable and reliable manufacturer.
No | Model | 24.14.500 |
1 | Stages | 4 |
2 | Ratio | 166.7:1 |
3 | Rated Output Torque | 500 Nm |
4 | Max Output Torque | 650 Nm |
5 | Rated Output Speed | 1.4 rpm |
6 | Rated Current | 7.8A |
7 | Rated Voltage | 24V |
8 | Noise | ≤60dB |
9 | Temperature | -40-80ºC |
Successful Projects
Exhibition
HPS attends 5-6 exhibitions every year, both solar PV exhibitions and automation industry exhibitions, professional sales team and quality products build CHINAMFG a good reputation in the market.
Production & Test Equipments
Certifications
Packaging & Shipping
FAQ
Q1:Which areas are your products mainly used in?
A:At present, we have 2 main products: precision planetary gear reducer and solar geared motor. Most of the precision planetary reducers are used in automation fields, such as medical equipment, 3D printers, door openers, tapping machines, CNC lathes and a series of automation equipment. In addition, our solar geared motors are used in photovoltaic power generation projects, which are mainly combined with rotary drives to drive solar panels to track sunlight.
Q2: How to choose the suitable planetary gearbox?
A :First of all, we need you to be able to provide relevant parameters. If you have a motor drawing, it will let us recommend a suitable gearbox for you faster. If not, we hope you can provide the following motor parameters: output speed, output torque, voltage, current, IP, noise, operating conditions, motor size and power, etc.
Q3: What is the price ?
A : The main determining factor for the price of each product is the order volume. You can communicate with us and let us understand each other. I believe that our prices, product quality and our services can definitely make you satisfied.
Q4: Do you provide customized service?
A: Yes, we provide customized services. You only need to put CHINAMFG your needs, and we will do our best to provide you with a plan, make plans, and try our best to meet your needs.
Application: | Universal, Industrial, Power Tools, Solar PV |
---|---|
Operating Speed: | Low Speed |
Excitation Mode: | Excited |
Function: | Control, Driving |
Casing Protection: | Closed Type |
Number of Poles: | 2 |
Samples: |
US$ 160/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Are there innovations or emerging technologies in the field of gear motor design?
Yes, there are several innovations and emerging technologies in the field of gear motor design. These advancements aim to improve the performance, efficiency, compactness, and reliability of gear motors. Here are some notable innovations and emerging technologies in gear motor design:
1. Miniaturization and Compact Design:
Advancements in manufacturing techniques and materials have enabled the miniaturization of gear motors without compromising their performance. Gear motors with compact designs are highly sought after in applications where space is limited, such as robotics, medical devices, and consumer electronics. Innovative approaches like micro-gear motors and integrated motor-gear units are being developed to achieve smaller form factors while maintaining high torque and efficiency.
2. High-Efficiency Gearing:
New gear designs focus on improving efficiency by reducing friction and mechanical losses. Advanced gear manufacturing techniques, such as precision machining and 3D printing, allow for the creation of intricate gear tooth profiles that optimize power transmission and minimize losses. Additionally, the use of high-performance materials, coatings, and lubricants helps reduce friction and wear, improving overall gear motor efficiency.
3. Magnetic Gearing:
Magnetic gearing is an emerging technology that replaces traditional mechanical gears with magnetic fields to transmit torque. It utilizes the interaction of permanent magnets to transfer power, eliminating the need for physical gear meshing. Magnetic gearing offers advantages such as high efficiency, low noise, compactness, and maintenance-free operation. While still being developed and refined, magnetic gearing holds promise for various applications, including gear motors.
4. Integrated Electronics and Controls:
Gear motor designs are incorporating integrated electronics and controls to enhance performance and functionality. Integrated motor drives and controllers simplify system integration, reduce wiring complexity, and allow for advanced control features. These integrated solutions offer precise speed and torque control, intelligent feedback mechanisms, and connectivity options for seamless integration into automation systems and IoT (Internet of Things) platforms.
5. Smart and Condition Monitoring Capabilities:
New gear motor designs incorporate smart features and condition monitoring capabilities to enable predictive maintenance and optimize performance. Integrated sensors and monitoring systems can detect abnormal operating conditions, track performance parameters, and provide real-time feedback for proactive maintenance and troubleshooting. This helps prevent unexpected failures, extend the lifespan of gear motors, and improve overall system reliability.
6. Energy-Efficient Motor Technologies:
Gear motor design is influenced by advancements in energy-efficient motor technologies. Brushless DC (BLDC) motors and synchronous reluctance motors (SynRM) are gaining popularity due to their higher efficiency, better power density, and improved controllability compared to traditional brushed DC and induction motors. These motor technologies, when combined with optimized gear designs, contribute to overall system energy savings and performance improvements.
These are just a few examples of the innovations and emerging technologies in gear motor design. The field is continuously evolving, driven by the need for more efficient, compact, and reliable motion control solutions in various industries. Gear motor manufacturers and researchers are actively exploring new materials, manufacturing techniques, control strategies, and system integration approaches to meet the evolving demands of modern applications.
What are some common challenges or issues associated with gear motors, and how can they be addressed?
Gear motors, like any mechanical system, can face certain challenges or issues that may affect their performance, reliability, or longevity. However, many of these challenges can be addressed through proper design, maintenance, and operational practices. Here are some common challenges associated with gear motors and potential solutions:
1. Gear Wear and Failure:
Over time, gears in a gear motor can experience wear, resulting in decreased performance or even failure. The following measures can address this challenge:
- Proper Lubrication: Regular lubrication with the appropriate lubricant can minimize friction and wear between gear teeth. It is essential to follow manufacturer recommendations for lubrication intervals and use high-quality lubricants suitable for the specific gear motor.
- Maintenance and Inspection: Routine maintenance and periodic inspections can help identify early signs of gear wear or damage. Timely replacement of worn gears or components can prevent further damage and ensure the gear motor’s optimal performance.
- Material Selection: Choosing gears made from durable and wear-resistant materials, such as hardened steel or specialized alloys, can increase their lifespan and resistance to wear.
2. Backlash and Inaccuracy:
Backlash, as discussed earlier, can introduce inaccuracies in gear motor systems. The following approaches can help address this issue:
- Anti-Backlash Gears: Using anti-backlash gears, which are designed to minimize or eliminate backlash, can significantly reduce inaccuracies caused by gear play.
- Tight Manufacturing Tolerances: Ensuring precise manufacturing tolerances during gear production helps minimize backlash and improve overall accuracy.
- Backlash Compensation: Implementing control algorithms or mechanisms to compensate for backlash can help mitigate its effects and improve the accuracy of the gear motor.
3. Noise and Vibrations:
Gear motors can generate noise and vibrations during operation, which may be undesirable in certain applications. The following strategies can help mitigate this challenge:
- Noise Dampening: Incorporating noise-dampening features, such as vibration-absorbing materials or isolation mounts, can reduce noise and vibrations transmitted from the gear motor to the surrounding environment.
- Quality Gears and Bearings: Using high-quality gears and bearings can minimize vibrations and noise generation. Precision-machined gears and well-maintained bearings help ensure smooth operation and reduce unwanted noise.
- Proper Alignment: Ensuring accurate alignment of gears, shafts, and other components reduces the likelihood of noise and vibrations caused by misalignment. Regular inspections and adjustments can help maintain optimal alignment.
4. Overheating and Thermal Management:
Heat buildup can be a challenge in gear motors, especially during prolonged or heavy-duty operation. Effective thermal management techniques can address this issue:
- Adequate Ventilation: Providing proper ventilation and airflow around the gear motor helps dissipate heat. This can involve designing cooling fins, incorporating fans or blowers, or ensuring sufficient clearance for air circulation.
- Heat Dissipation Materials: Using heat-dissipating materials, such as aluminum or copper, in motor housings or heat sinks can improve heat dissipation and prevent overheating.
- Monitoring and Control: Implementing temperature sensors and thermal protection mechanisms allows for real-time monitoring of the gear motor’s temperature. If the temperature exceeds safe limits, the motor can be automatically shut down or adjusted to prevent damage.
5. Load Variations and Shock Loads:
Unexpected load variations or shock loads can impact the performance and durability of gear motors. The following measures can help address this challenge:
- Proper Sizing and Selection: Choosing gear motors with appropriate torque and load capacity ratings for the intended application helps ensure they can handle expected load variations and occasional shock loads without exceeding their limits.
- Shock Absorption: Incorporating shock-absorbing mechanisms, such as dampers or resilient couplings, can help mitigate the effects of sudden load changes or impacts on the gear motor.
- Load Monitoring: Implementing load monitoring systems or sensors allows for real-time monitoring of load variations. This information can be used to adjust operation or trigger protective measures when necessary.
By addressing these common challenges associated with gear motors through appropriate design considerations, regular maintenance, and operational practices, it is possible to enhance their performance, reliability, and longevity.
In which industries are gear motors commonly used, and what are their primary applications?
Gear motors find widespread use in various industries due to their versatility, reliability, and ability to provide controlled mechanical power. They are employed in a wide range of applications that require precise power transmission and speed control. Here’s a detailed explanation of the industries where gear motors are commonly used and their primary applications:
1. Robotics and Automation:
Gear motors play a crucial role in robotics and automation industries. They are used in robotic arms, conveyor systems, automated assembly lines, and other robotic applications. Gear motors provide the required torque, speed control, and directional control necessary for the precise movements and operations of robots. They enable accurate positioning, gripping, and manipulation tasks in industrial and commercial automation settings.
2. Automotive Industry:
The automotive industry extensively utilizes gear motors in various applications. They are used in power windows, windshield wipers, HVAC systems, seat adjustment mechanisms, and many other automotive components. Gear motors provide the necessary torque and speed control for these systems, enabling smooth and efficient operation. Additionally, gear motors are also utilized in electric and hybrid vehicles for powertrain applications.
3. Manufacturing and Machinery:
Gear motors find wide application in the manufacturing and machinery sector. They are used in conveyor belts, packaging equipment, material handling systems, industrial mixers, and other machinery. Gear motors provide reliable power transmission, precise speed control, and torque amplification, ensuring efficient and synchronized operation of various manufacturing processes and machinery.
4. HVAC and Building Systems:
In heating, ventilation, and air conditioning (HVAC) systems, gear motors are commonly used in damper actuators, control valves, and fan systems. They enable precise control of airflow, temperature, and pressure, contributing to energy efficiency and comfort in buildings. Gear motors also find applications in automatic doors, blinds, and gate systems, providing reliable and controlled movement.
5. Marine and Offshore Industry:
Gear motors are extensively used in the marine and offshore industry, particularly in propulsion systems, winches, and cranes. They provide the required torque and speed control for various marine operations, including steering, anchor handling, cargo handling, and positioning equipment. Gear motors in marine applications are designed to withstand harsh environments and provide reliable performance under demanding conditions.
6. Renewable Energy Systems:
The renewable energy sector, including wind turbines and solar tracking systems, relies on gear motors for efficient power generation. Gear motors are used to adjust the rotor angle and position in wind turbines, optimizing their performance in different wind conditions. In solar tracking systems, gear motors enable the precise movement and alignment of solar panels to maximize sunlight capture and energy production.
7. Medical and Healthcare:
Gear motors have applications in the medical and healthcare industry, including in medical equipment, laboratory devices, and patient care systems. They are used in devices such as infusion pumps, ventilators, surgical robots, and diagnostic equipment. Gear motors provide precise control and smooth operation, ensuring accurate dosing, controlled movements, and reliable functionality in critical medical applications.
These are just a few examples of the industries where gear motors are commonly used. Their versatility and ability to provide controlled mechanical power make them indispensable in numerous applications requiring torque amplification, speed control, directional control, and load distribution. The reliable and efficient power transmission offered by gear motors contributes to the smooth and precise operation of machinery and systems in various industries.
editor by CX 2023-10-20
China ZD 62mm Change Drive Torque Three Steps Brush/Brushless Precision Planetary Transmission Gear Motor motor driver
Solution Description
ZD 62mm Alter Travel Torque A few Steps Brush/Brushless Precision Planetary Transmission Gear Motor
Detailed Pictures
Item Parameters
Design:Z62DP2490-30S(62PM8.63K)
Other Relevant Items
Simply click Here For Much more Particulars
Company Profile
FAQ
Q: What’re your primary products?
A: We at present generate Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can verify the specifications for earlier mentioned motors on our web site and you can e mail us to suggest required motors per your specification as well.
Q: How to decide on a suitable motor?
A:If you have motor photos or drawings to display us, or you have detailed specs like voltage, velocity, torque, motor size, doing work manner of the motor, needed lifetime and sound level etc, please do not wait to permit us know, then we can advocate suited motor for every your ask for appropriately.
Q: Do you have a custom-made support for your normal motors?
A: Sure, we can customize for every your request for the voltage, pace, torque and shaft size/shape. If you require added wires/cables soldered on the terminal or require to include connectors, or capacitors or EMC we can make it too.
Q: Do you have an specific style support for motors?
A: Sure, we would like to style motors independently for our clients, but it may want some mold developing price and design and style cost.
Q: What is your lead time?
A: Generally speaking, our typical standard solution will need to have fifteen-30days, a bit more time for custom-made merchandise. But we are very adaptable on the guide time, it will depend on the particular orders.
Remember to get in touch with us if you have thorough requests, thank you !
US $44.25-54.96 / Piece | |
1 Piece (Min. Order) |
###
Application: | Motor, Electric Cars |
---|---|
Function: | Change Drive Torque, Speed Changing |
Layout: | Transmission |
Hardness: | Hardened Tooth Surface |
Installation: | Horizontal Type |
Step: | Three-Step |
###
Customization: |
Available
|
---|
US $44.25-54.96 / Piece | |
1 Piece (Min. Order) |
###
Application: | Motor, Electric Cars |
---|---|
Function: | Change Drive Torque, Speed Changing |
Layout: | Transmission |
Hardness: | Hardened Tooth Surface |
Installation: | Horizontal Type |
Step: | Three-Step |
###
Customization: |
Available
|
---|
The Basics of a Planetary Motor
A Planetary Motor is a type of gearmotor that uses multiple planetary gears to deliver torque. This system minimizes the chances of failure of individual gears and increases output capacity. Compared to the planetary motor, the spur gear motor is less complex and less expensive. However, a spur gear motor is generally more suitable for applications requiring low torque. This is because each gear is responsible for the entire load, limiting its torque.
Self-centering planetary gears
This self-centering mechanism for a planetary motor is based on a helical arrangement. The helical structure involves a sun-planet, with its crown and slope modified. The gears are mounted on a ring and share the load evenly. The helical arrangement can be either self-centering or self-resonant. This method is suited for both applications.
A helical planetary gear transmission is illustrated in FIG. 1. A helical configuration includes an output shaft 18 and a sun gear 18. The drive shaft extends through an opening in the cover to engage drive pins on the planet carriers. The drive shaft of the planetary gears can be fixed to the helical arrangement or can be removable. The transmission system is symmetrical, allowing the output shaft of the planetary motor to rotate radially in response to the forces acting on the planet gears.
A flexible pin can improve load sharing. This modification may decrease the face load distribution, but increases the (K_Hbeta) parameter. This effect affects the gear rating and life. It is important to understand the effects of flexible pins. It is worth noting that there are several other disadvantages of flexible pins in helical PGSs. The benefits of flexible pins are discussed below.
Using self-centering planetary gears for a helical planetary motor is essential for symmetrical force distribution. These gears ensure the symmetry of force distribution. They can also be used for self-centering applications. Self-centering planetary gears also guarantee the proper force distribution. They are used to drive a planetary motor. The gearhead is made of a ring gear, and the output shaft is supported by two ball bearings. Self-centering planetary gears can handle a high torque input, and can be suited for many applications.
To solve for a planetary gear mechanism, you need to find its pitch curve. The first step is to find the radius of the internal gear ring. A noncircular planetary gear mechanism should be able to satisfy constraints that can be complex and nonlinear. Using a computer, you can solve for these constraints by analyzing the profile of the planetary wheel’s tooth curve.
High torque
Compared to the conventional planetary motors, high-torque planetary motors have a higher output torque and better transmission efficiency. The high-torque planetary motors are designed to withstand large loads and are used in many types of applications, such as medical equipment and miniature consumer electronics. Their compact design makes them suitable for small space-saving applications. In addition, these motors are designed for high-speed operation.
They come with a variety of shaft configurations and have a wide range of price-performance ratios. The FAULHABER planetary gearboxes are made of plastic, resulting in a good price-performance ratio. In addition, plastic input stage gears are used in applications requiring high torques, and steel input stage gears are available for higher speeds. For difficult operating conditions, modified lubrication is available.
Various planetary gear motors are available in different sizes and power levels. Generally, planetary gear motors are made of steel, brass, or plastic, though some use plastic for their gears. Steel-cut gears are the most durable, and are ideal for applications that require a high amount of torque. Similarly, nickel-steel gears are more lubricated and can withstand a high amount of wear.
The output torque of a high-torque planetary gearbox depends on its rated input speed. Industrial-grade high-torque planetary gearboxes are capable of up to 18000 RPM. Their output torque is not higher than 2000 nm. They are also used in machines where a planet is decelerating. Their working temperature ranges between 25 and 100 degrees Celsius. For best results, it is best to choose the right size for the application.
A high-torque planetary gearbox is the most suitable type of high-torque planetary motor. It is important to determine the deceleration ratio before buying one. If there is no product catalog that matches your servo motor, consider buying a close-fitting high-torque planetary gearbox. There are also high-torque planetary gearboxes available for custom-made applications.
High efficiency
A planetary gearbox is a type of mechanical device that is used for high-torque transmission. This gearbox is made of multiple pairs of gears. Large gears on the output shaft mesh with small gears on the input shaft. The ratio between the big and small gear teeth determines the transmittable torque. High-efficiency planetary gearheads are available for linear motion, axial loads, and sterilizable applications.
The AG2400 high-end gear unit series is ideally matched to Beckhoff’s extensive line of servomotors and gearboxes. Its single-stage and multi-stage transmission ratios are highly flexible and can be matched to different robot types. Its modified lubrication helps it operate in difficult operating conditions. These high-performance gear units are available in a wide range of sizes.
A planetary gear motor can be made of steel, nickel-steel, or brass. In addition to steel, some models use plastic. The planetary gears share work between multiple gears, making it easy to transfer high amounts of power without putting a lot of stress on the gears. The gears in a planetary gear motor are held together by a movable arm. High-efficiency planetary gear motors are more efficient than traditional gearmotors.
While a planetary gear motor can generate torque, it is more efficient and cheaper to produce. The planetary gear system is designed with all gears operating in synchrony, minimizing the chance of a single gear failure. The efficiency of a planetary gearmotor makes it a popular choice for high-torque applications. This type of motor is suitable for many applications, and is less expensive than a standard geared motor.
The planetary gearbox is a combination of a planetary type gearbox and a DC motor. The planetary gearbox is compact, versatile, and efficient, and can be used in a wide range of industrial environments. The planetary gearbox with an HN210 DC motor is used in a 22mm OD, PPH, and ph configuration with voltage operating between 6V and 24V. It is available in many configurations and can be custom-made to meet your application requirements.
High cost
In general, planetary gearmotors are more expensive than other configurations of gearmotors. This is due to the complexity of their design, which involves the use of a central sun gear and a set of planetary gears which mesh with each other. The entire assembly is enclosed in a larger internal tooth gear. However, planetary motors are more effective for higher load requirements. The cost of planetary motors varies depending on the number of gears and the number of planetary gears in the system.
If you want to build a planetary gearbox, you can purchase a gearbox for the motor. These gearboxes are often available with several ratios, and you can use any one to create a custom ratio. The cost of a gearbox depends on how much power you want to move with the gearbox, and how much gear ratio you need. You can even contact your local FRC team to purchase a gearbox for the motor.
Gearboxes play a major role in determining the efficiency of a planetary gearmotor. The output shafts used for this type of motor are usually made of steel or nickel-steel, while those used in planetary gearboxes are made from brass or plastic. The former is the most durable and is best for applications that require high torque. The latter, however, is more absorbent and is better at holding lubricant.
Using a planetary gearbox will allow you to reduce the input power required for the stepper motor. However, this is not without its downsides. A planetary gearbox can also be replaced with a spare part. A planetary gearbox is inexpensive, and its spare parts are inexpensive. A planetary gearbox has low cost compared to a planetary motor. Its advantages make it more desirable in certain applications.
Another advantage of a planetary gear unit is the ability to handle ultra-low speeds. Using a planetary gearbox allows stepper motors to avoid resonance zones, which can cause them to crawl. In addition, the planetary gear unit allows for safe and efficient cleaning. So, whether you’re considering a planetary gear unit for a particular application, these gear units can help you get exactly what you need.
editor by czh 2023-01-05
China best C45 20cr 40crmnti Harden Steel Precision Machined Straight Shaft Drive Spur Bevel Gear wholesaler
Product Description
Parts Display
Our machining services:
Materials:
Surface finishing:
Zinc plating, Chrome plating, Nickel plating, Tin plating, Polishing, Anodizing, Power-coating, Oxide black, Sandblast Anodizing, Electroless nickel, Fe/Zn8/C PER ISO 2081, etc.
Factory Display:
CNC milling machines CNC turning
Swiss type CNC lathe CMM inspector
FAQ:
Q1. Are you factory for trade company?
A: We are factory for machining metal & plastic hardware / parts
Q2. What is your terms of payment?
A: T/T 30% as deposit, and 70% balance before shipping.
Q3. What is your terms of delivery?
A: EXW, FOB, CFR, CIF, DDU.
Q4. How about your delivery time?
A: Usually 7 to 15 days, depends on detail parts and quantity.
Q5. Can you produce according to the samples?
A: Sure, we can produce according to your samples or technical drawings. We are CZPT to make new mould.
Q6. What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.
Q7. Do you test all your goods before delivery?
A: Yes, we have test equipment and highly trained QC worker to inspect & control quality before delivery.
Item | Material | Status of Stock | Item | Material | Status of Stock |
1 | AL6061 | √ | 11 | Brass | √ |
2 | AL6063 | √ | 12 | Copper | √ |
3 | AL7075 | √ | 13 | OFHC | √ |
4 | AL5052 / 5083 | √ | 14 | Derlin/Peek | √ |
5 | INVAR (4J36) | √ | 15 | ULTEM1000 / PPO | √ |
6 | KOVAR (4J29) | √ | 16 | Nylon/PA | √ |
7 | ALLOY 52 | √ | 17 | Titanium TC-4 | √ |
8 | SS303 /304 | √ | 18 | ALSI 50%,42%,27% | √ |
9 | SS 316L | √ | 19 | S136 / ADC12 | √ |
10 | SS 420 /440C | √ | 20 | DC04 / 42CrMo | √ |
Item | Material | Status of Stock | Item | Material | Status of Stock |
1 | AL6061 | √ | 11 | Brass | √ |
2 | AL6063 | √ | 12 | Copper | √ |
3 | AL7075 | √ | 13 | OFHC | √ |
4 | AL5052 / 5083 | √ | 14 | Derlin/Peek | √ |
5 | INVAR (4J36) | √ | 15 | ULTEM1000 / PPO | √ |
6 | KOVAR (4J29) | √ | 16 | Nylon/PA | √ |
7 | ALLOY 52 | √ | 17 | Titanium TC-4 | √ |
8 | SS303 /304 | √ | 18 | ALSI 50%,42%,27% | √ |
9 | SS 316L | √ | 19 | S136 / ADC12 | √ |
10 | SS 420 /440C | √ | 20 | DC04 / 42CrMo | √ |
Hypoid Bevel Vs Straight Spiral Bevel – What’s the Difference?
Spiral gears come in many different varieties, but there is a fundamental difference between a Hypoid bevel gear and a Straight spiral bevel. This article will describe the differences between the two types of gears and discuss their use. Whether the gears are used in industrial applications or at home, it is vital to understand what each type does and why it is important. Ultimately, your final product will depend on these differences.
Hypoid bevel gears
In automotive use, hypoid bevel gears are used in the differential, which allows the wheels to rotate at different speeds while maintaining the vehicle’s handling. This gearbox assembly consists of a ring gear and pinion mounted on a carrier with other bevel gears. These gears are also widely used in heavy equipment, auxiliary units, and the aviation industry. Listed below are some common applications of hypoid bevel gears.
For automotive applications, hypoid gears are commonly used in rear axles, especially on large trucks. Their distinctive shape allows the driveshaft to be located deeper in the vehicle, thus lowering the center of gravity and minimizing interior disruption. This design makes the hypoid gearset one of the most efficient types of gearboxes on the market. In addition to their superior efficiency, hypoid gears are very easy to maintain, as their mesh is based on sliding action.
The face-hobbed hypoid gears have a characteristic epicycloidal lead curve along their lengthwise axis. The most common grinding method for hypoid gears is the Semi-Completing process, which uses a cup-shaped grinding wheel to replace the lead curve with a circular arc. However, this method has a significant drawback – it produces non-uniform stock removal. Furthermore, the grinding wheel cannot finish all the surface of the tooth.
The advantages of a hypoid gear over a spiral bevel gear include a higher contact ratio and a higher transmission torque. These gears are primarily used in automobile drive systems, where the ratio of a single pair of hypoid gears is the highest. The hypoid gear can be heat-treated to increase durability and reduce friction, making it an ideal choice for applications where speed and efficiency are critical.
The same technique used in spiral bevel gears can also be used for hypoid bevel gears. This machining technique involves two-cut roughing followed by one-cut finishing. The pitch diameter of hypoid gears is up to 2500 mm. It is possible to combine the roughing and finishing operations using the same cutter, but the two-cut machining process is recommended for hypoid gears.
The advantages of hypoid gearing over spiral bevel gears are primarily based on precision. Using a hypoid gear with only three arc minutes of backlash is more efficient than a spiral bevel gear that requires six arc minutes of backlash. This makes hypoid gears a more viable choice in the motion control market. However, some people may argue that hypoid gears are not practical for automobile assemblies.
Hypoid gears have a unique shape – a cone that has teeth that are not parallel. Their pitch surface consists of two surfaces – a conical surface and a line-contacting surface of revolution. An inscribed cone is a common substitute for the line-contact surface of hypoid bevel gears, and it features point-contacts instead of lines. Developed in the early 1920s, hypoid bevel gears are still used in heavy truck drive trains. As they grow in popularity, they are also seeing increasing use in the industrial power transmission and motion control industries.
Straight spiral bevel gears
There are many differences between spiral bevel gears and the traditional, non-spiral types. Spiral bevel gears are always crowned and never conjugated, which limits the distribution of contact stress. The helical shape of the bevel gear is also a factor of design, as is its length. The helical shape has a large number of advantages, however. Listed below are a few of them.
Spiral bevel gears are generally available in pitches ranging from 1.5 to 2500 mm. They are highly efficient and are also available in a wide range of tooth and module combinations. Spiral bevel gears are extremely accurate and durable, and have low helix angles. These properties make them excellent for precision applications. However, some gears are not suitable for all applications. Therefore, you should consider the type of bevel gear you need before purchasing.
Compared to helical gears, straight bevel gears are easier to manufacture. The earliest method used to manufacture these gears was the use of a planer with an indexing head. However, with the development of modern manufacturing processes such as the Revacycle and Coniflex systems, manufacturers have been able to produce these gears more efficiently. Some of these gears are used in windup alarm clocks, washing machines, and screwdrivers. However, they are particularly noisy and are not suitable for automobile use.
A straight bevel gear is the most common type of bevel gear, while a spiral bevel gear has concave teeth. This curved design produces a greater amount of torque and axial thrust than a straight bevel gear. Straight teeth can increase the risk of breaking and overheating equipment and are more prone to breakage. Spiral bevel gears are also more durable and last longer than helical gears.
Spiral and hypoid bevel gears are used for applications with high peripheral speeds and require very low friction. They are recommended for applications where noise levels are essential. Hypoid gears are suitable for applications where they can transmit high torque, although the helical-spiral design is less effective for braking. For this reason, spiral bevel gears and hypoids are generally more expensive. If you are planning to buy a new gear, it is important to know which one will be suitable for the application.
Spiral bevel gears are more expensive than standard bevel gears, and their design is more complex than that of the spiral bevel gear. However, they have the advantage of being simpler to manufacture and are less likely to produce excessive noise and vibration. They also have less teeth to grind, which means that they are not as noisy as the spiral bevel gears. The main benefit of this design is their simplicity, as they can be produced in pairs, which saves money and time.
In most applications, spiral bevel gears have advantages over their straight counterparts. They provide more evenly distributed tooth loads and carry more load without surface fatigue. The spiral angle of the teeth also affects thrust loading. It is possible to make a straight spiral bevel gear with two helical axes, but the difference is the amount of thrust that is applied to each individual tooth. In addition to being stronger, the spiral angle provides the same efficiency as the straight spiral gear.
Hypoid gears
The primary application of hypoid gearboxes is in the automotive industry. They are typically found on the rear axles of passenger cars. The name is derived from the left-hand spiral angle of the pinion and the right-hand spiral angle of the crown. Hypoid gears also benefit from an offset center of gravity, which reduces the interior space of cars. Hypoid gears are also used in heavy trucks and buses, where they can improve fuel efficiency.
The hypoid and spiral bevel gears can be produced by face-hobbing, a process that produces highly accurate and smooth-surfaced parts. This process enables precise flank surfaces and pre-designed ease-off topographies. These processes also enhance the mechanical resistance of the gears by 15 to 20%. Additionally, they can reduce noise and improve mechanical efficiency. In commercial applications, hypoid gears are ideal for ensuring quiet operation.
Conjugated design enables the production of hypoid gearsets with length or profile crowning. Its characteristic makes the gearset insensitive to inaccuracies in the gear housing and load deflections. In addition, crowning allows the manufacturer to adjust the operating displacements to achieve the desired results. These advantages make hypoid gear sets a desirable option for many industries. So, what are the advantages of hypoid gears in spiral gears?
The design of a hypoid gear is similar to that of a conventional bevel gear. Its pitch surfaces are hyperbolic, rather than conical, and the teeth are helical. This configuration also allows the pinion to be larger than an equivalent bevel pinion. The overall design of the hypoid gear allows for large diameter shafts and a large pinion. It can be considered a cross between a bevel gear and a worm drive.
In passenger vehicles, hypoid gears are almost universal. Their smoother operation, increased pinion strength, and reduced weight make them a desirable choice for many vehicle applications. And, a lower vehicle body also lowers the vehicle’s body. These advantages made all major car manufacturers convert to hypoid drive axles. It is worth noting that they are less efficient than their bevel gear counterparts.
The most basic design characteristic of a hypoid gear is that it carries out line contact in the entire area of engagement. In other words, if a pinion and a ring gear rotate with an angular increment, line contact is maintained throughout their entire engagement area. The resulting transmission ratio is equal to the angular increments of the pinion and ring gear. Therefore, hypoid gears are also known as helical gears.
Micro Gear Mo factory tor Electric Drive High Speed Electromagnetic Brake Three Single Phase Scooters Elevator Shaft Engi Cost ne Drive Best Stepper Synchronous Motors
Product Description
Micro Gear CZPT CZPT ctric CZPT CZPT CZPT CZPT ctromagnetic Brake Three Single Phase Scooters CZPT vator Shaft Engine CZPT Best Stepper Synchronous CZPT s
micro gear motor
The Micro Gear agricultural Chain CZPT s by CZPT provides hobbyists and robotics enthusiasts with an inexpensive solution with their motor requirements. The micro gear electric motor is capable of providing up to 1650g. cm of torque; with such a little size, these fantastic little motors hold their own against complex and demanding tasks. Have a look beneath the specifications tab to learn more on ordering and torque/rpm figures.
Also CZPT is the MB7 Bracket, which is featured in one of the item images and may make mounting the gear motor a very simple task, requiring simply two screws to attach the assembly on your application.
All of the micro metal gearmotors possess the same physical dimensions, so one version can be quickly swapped for another if your design requirements change.
Long (9mm), 3 mm-diameter D-shaped metallic output shaft.
4.5mm CZPT , 1mm diameter back again shaft, ideal for optical encoders!
Micro Gear Motor Electric Drive High Speed Electromagnetic Brake Three Single Phase Scooters Custom Elevator Shaft Engine Drive Best S price tepper Synchronous Motors
Product Description
Micro Gear CZPT CZPT ctric CZPT CZPT CZPT CZPT ctromagnetic Brake Three Single Phase Scooters CZPT vator Shaft Engine CZPT Best Stepper Synchronous CZPT s
micro gear motor
The Micro Gear agricultural Chain CZPT s by CZPT provides hobbyists and robotics enthusiasts with an inexpensive solution with their motor requirements. The micro gear electric motor is capable of providing up to 1650g. cm of torque; with such a little size, these fantastic little motors hold their own against complex and demanding tasks. Have a look beneath the specifications tab to learn more on ordering and torque/rpm figures.
Also CZPT is the MB7 Bracket, which is featured in one of the item images and may make mounting the gear motor a very simple task, requiring simply two screws to attach the assembly on your application.
All of the micro metal gearmotors possess the same physical dimensions, so one version can be quickly swapped for another if your design requirements change.
Long (9mm), 3 mm-diameter D-shaped metallic output shaft.
4.5mm CZPT , 1mm diameter back again shaft, ideal for optical encoders!