Tag Archives: electric vacuum pump 12v

China high quality 12V 24V 48V Variable Speed High Power Electric Car Brushless DC Planetary Gear Servo Motor for Micro Electric Pump Fan Chain Grinder vacuum pump and compressor

Product Description

 

Product Description

 

model Number of poles Phase Rated voltage Rated speed Continuous locked-rotor torque Rated torque Rated power Peak torque
Units     VDC RPM N.m N.m W N.m
42BYA075B030C-02 4 3 24 3000 0.192 0.16 50 0.48

 

model Peak current Torque constant Back EMF Motor length Motor length voltage range Range of rotation weight
Units A Nm/A V/KRPM g.cMoment of inertia mm VDC RPM Kg
42BYA075B030C-02 9.6 0.05 3.947 14.6 134 24~48 1000~3000 1.0 

Product Parameters

Quiet stable and reliable for long life operation

1.Voltage: 24 VDC
2.Number of phases: 3
3.Number of levels: 4
4.Line-to-line resistance: 1.45±10%ohms
5.Line-to-line inductance: 1.27±20%mH
6.Rated current: 3.2A
7.Rated power: 50W
8.No-load speed: 4300 rpm
9.Insulation class: B
10.Reduction ratio: 1:58.22
11.Output torque: 7.5 N.m
12.Output speed: 51.5 rpm
13.We can design the special voltage and shaft and so on

Jintian Imp. & Exp Co. Ltd opened in 2008 to facilitate international trade between China and the rest of the world. The young firm grew quickly, gaining a reputation for integrity, efficiency and astute knowledge of local market.

Throughout its 10 more years history, CHINAMFG has sought to connect customers with opportunities. While that purpose has remained unchanged, CHINAMFG has succeeded by positioning itself where the growth is and by aligning itself to the major economic trends of the time.

After being funded in ZheJiang , China to facilitate local and international trade, CHINAMFG expanded rapidly to capture the increasing flow of commerce between Asia, Europe and North America. Since then, CHINAMFG has continued to grow in line with changing trade patterns and developing markets, pioneering modern international trade practices in many countries. Built over 10 years, this global network is highly distinctive, difficult to replicate and ideally positioned for the world’s top trade corridors.

Our ability to connect customers remains absolutely central to the company’s strategy today, which aims to establish CHINAMFG as the world”s leading international trade company. Above all, we remain dedicated to the purpose that CHINAMFG was founded to serve: Connecting customers to opportunities, enabling businesses to CHINAMFG and economies to prosper, and helping people to fulfill their hopes and dreams.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Samples:
US$ 162/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

What role do materials play in the design and manufacturing of reliable micro gear motors?

Materials play a critical role in the design and manufacturing of reliable micro gear motors. Here’s how they contribute:

  • Gear Material: The choice of material for the gears is crucial for the overall performance and reliability of micro gear motors. Gears are subjected to high loads, friction, and wear during operation. Common materials used for gears include steel, stainless steel, brass, and various engineering plastics. The selected material should have high strength, good wear resistance, and low friction characteristics to ensure smooth and efficient power transmission, minimize gear failure, and prolong the motor’s lifespan.
  • Motor Housing: The material used for the motor housing affects its durability, thermal management, and protection against environmental factors. Common materials for motor housings include aluminum, stainless steel, and engineering plastics. The housing should provide structural integrity, efficient heat dissipation, and protection against dust, moisture, and other contaminants to maintain the motor’s reliability and performance in various operating conditions.
  • Bearing Materials: Bearings are essential components in micro gear motors as they reduce friction and enable smooth rotation of the motor shaft. The choice of bearing material is crucial for ensuring reliable and long-lasting operation. Common bearing materials include stainless steel, ceramics, and various self-lubricating materials. The selected material should have low friction, high load-bearing capacity, and resistance to wear and corrosion to minimize power losses, maintain efficiency, and extend the motor’s lifespan.
  • Magnetic Materials: In motors that utilize permanent magnets, such as brushless DC (BLDC) motors, the choice of magnetic material is crucial for generating and maintaining magnetic fields. Neodymium magnets are commonly used due to their high magnetic strength and energy efficiency. The quality and characteristics of the magnetic material directly impact the motor’s performance, torque output, and overall efficiency.
  • Electrical Insulation: Micro gear motors often involve the flow of electrical current through the motor windings. Insulation materials, such as enamel or varnish, are used to electrically isolate the windings and prevent short circuits. The selected insulation material should have high dielectric strength, good thermal stability, and resistance to environmental factors to ensure reliable electrical insulation and prevent motor failures.

By carefully selecting appropriate materials for gears, motor housing, bearings, magnetic components, and electrical insulation, designers and manufacturers can optimize the reliability, efficiency, and performance of micro gear motors. The materials should be chosen based on the specific requirements of the application, considering factors such as load capacity, operating conditions, environmental factors, and cost-effectiveness.

brushless motor

Can you provide examples of innovative uses of micro gear motors in modern technology?

Micro gear motors have found innovative applications across various modern technologies. Here are some examples:

  • Drones: Micro gear motors are commonly used in drones to drive the propellers and control the flight. Their compact size, lightweight design, and precise control capabilities make them ideal for achieving stable and agile flight maneuvers.
  • Robotics: Micro gear motors play a crucial role in robotics, powering the joints and actuators of robotic arms, grippers, and humanoid robots. Their precise control, compact form factor, and high torque-to-size ratio enable robots to perform delicate and precise manipulations in industrial automation, medical procedures, and research applications.
  • Automotive Systems: Micro gear motors are used in various automotive systems, such as power windows, door locks, and seat adjustments. Their small size and high torque allow for efficient and reliable operation of these mechanisms within the limited space available in vehicles.
  • Medical Devices: Micro gear motors are utilized in medical devices and equipment, including surgical robots, prosthetics, insulin pumps, and lab automation systems. Their precise control, compact size, and low power consumption make them suitable for applications requiring fine movements, accurate dosing, and miniaturization.
  • Consumer Electronics: Micro gear motors are incorporated into numerous consumer electronic devices. They can be found in cameras for lens movement and autofocus, wearable devices for haptic feedback and vibration, and home appliances for precise control of valves, fans, and robotic components.
  • Smart Home Systems: Micro gear motors are employed in smart home systems to control various functions, such as motorized curtains, blinds, and awnings. Their precise control, quiet operation, and compatibility with automation systems allow for convenient and customizable control of these home features.

These examples represent just a few of the many innovative uses of micro gear motors in modern technology. Their versatility, precision, and compact design make them valuable components in a wide range of applications, contributing to advancements in automation, robotics, electronics, and beyond.

brushless motor

In which applications are micro gear motors commonly used due to their compact size?

Micro gear motors find applications in various industries where their compact size is advantageous. Here are some common applications where micro gear motors are commonly used:

1. Micro Robotics:

Micro gear motors are extensively used in micro robotics applications. These motors provide the necessary torque and precision for controlling the movements of miniature robot platforms, robotic arms, grippers, and other robotic components. Their small size allows for intricate and precise motion control in confined spaces.

2. Medical Devices:

In the medical field, micro gear motors are employed in various devices and equipment, including medical robots, surgical instruments, diagnostic devices, and drug delivery systems. Their compact size enables integration into portable and handheld medical devices while ensuring precise and controlled movements for accurate diagnostics and minimally invasive procedures.

3. Automotive Systems:

Micro gear motors are used in automotive systems that require compact and lightweight actuators. They find applications in power windows, door locks, seat adjustment mechanisms, mirror adjustment, and HVAC controls. The small size of micro gear motors allows for efficient utilization of space within the vehicle while providing reliable and precise operation.

4. Consumer Electronics:

Micro gear motors are found in various consumer electronic devices. They are used in camera autofocus mechanisms, zoom controls, robotic toys, smart home devices, and wearable technology. The compact size of micro gear motors enables seamless integration into these devices, providing precise and controlled motion capabilities.

5. Industrial Automation:

In industrial automation applications, micro gear motors are utilized in small-scale machinery, robotics, and automated systems. They are used in conveyor systems, pick-and-place machines, miniature actuators, and precision positioning systems. The small size and high gearing ratio of micro gear motors allow for accurate and repeatable positioning in tight spaces.

6. Aerospace and Defense:

Micro gear motors are employed in aerospace and defense applications, including drones, unmanned aerial vehicles (UAVs), miniature satellites, and guidance systems. Their compact size and lightweight properties are crucial for reducing the overall weight and improving maneuverability in these applications.

7. Scientific and Laboratory Equipment:

Micro gear motors are used in scientific instruments, laboratory equipment, and research devices. They find applications in precision syringe pumps, sample handling systems, microfluidic devices, and motion control mechanisms for optical instruments. The compact size and precise motion control capabilities of micro gear motors support accurate and controlled experimentation and analysis.

8. Industrial and Manufacturing:

In industrial and manufacturing settings, micro gear motors are utilized in small-scale machinery, conveyors, packaging equipment, and assembly systems. They provide compact and efficient motion control for precise material handling, part positioning, and automation processes.

These are just a few examples of the many applications where micro gear motors are commonly used due to their compact size. Their small form factor and precise motion control capabilities make them ideal for applications where space constraints, weight reduction, and accurate motion control are crucial factors.

China high quality 12V 24V 48V Variable Speed High Power Electric Car Brushless DC Planetary Gear Servo Motor for Micro Electric Pump Fan Chain Grinder   vacuum pump and compressor	China high quality 12V 24V 48V Variable Speed High Power Electric Car Brushless DC Planetary Gear Servo Motor for Micro Electric Pump Fan Chain Grinder   vacuum pump and compressor
editor by CX 2024-05-17

China Best Sales 36V 12V High Torque Gear Ratio 4.5W 7.8rpm Electric Micro Brush Mini DC Geared Box Motor with Wheels for Robot/ Vending Machine vacuum pump distributors

Product Description

BG 36ZYT DC Brushed Motor 
Environmental Conditons -20ºC~50ºC
Lnsulation Clase B
Protection class IP44
Noise ≤65dB
Number of phases Single 
Lifespan >1000h

Electrical Specifications
Model RATED LOAD NO LOAD   STALL
 Voltage    Power  

  Speed  

 Torque    Current   Speed    Current   Torque   Current 
V W rpm N.m A rpm A   N.m   A  
BG 36555-1 12 4.5 2500 0.18 0.54 3000 0.14  0.12 3.1
BG 36555-2 24 7.8 3980 0.19 0.45 4500 0.14  0.17 3.4
We can also customize products according to customer requirements .  

 Planetary Gear Motor Technical Data-BG
Ratio 3.7 5.2  50.9  99.5 137 669 997 2672
NO-load speed 810 576 59 30 22 4.4 5 1.1
Rated speed(rpm) 675 480 49 25 18 3.7 2.5 0.9
Rated torque 0.06 0.08 0.78 1.52 1.85 3 3 3

 

Established in 1994, HangZhou BG Motor Factory is a professional manufacturer of brushless DC motors, brushed DC motors, planetary gear motors, worm gear motors, Universal motors and AC motors. We have a plant area of 6000 square meters, multiple patent certificates, and we have the independent design and development capabilities and strong technical force, with an annual output of more than 1 million units. Since the beginning of its establishment, BG motor has focused on the overall solution of motors. We manufacture and design motors, provide professional customized services, respond quickly to customer needs, and actively help customers to solve problems. Our motor products are exported to 20 countries, including the United States, Germany, Italy, the United Kingdom, Poland, Slovenia, Switzerland, Sweden, Singapore, South Korea etc.
Our founder, Mr. Sun, has more than 40 years of experience in motor technology, and our other engineers also have more than 15 years of experience, and 60% of our staff have more than 10 years of experience, and we can assure you that the quality of our motors is top notch.
The products cover AGV, underwater robots, robots, sewing machine industry, automobiles, medical equipment, automatic doors, lifting equipment, industrial equipment and have a wide range of applications.
We strive for CHINAMFG in the quality of each product, and we are only a small and sophisticated manufacturer.
Our vision: Drive the world CHINAMFG and make life better!

Q:1.What kind of motors can you provide?

A:At present, we mainly produce brushless DC motors, brush DC motors, AC motors, Universal Motors; the power of the motor is less than 5000W, and the diameter of the motor is not more than 200mm;

Q:2.Can you send me a price list?

A:For all of our motors, they are customized based on different requirements like lifetime, noise,voltage,and shaft etc. The price also varies according to annual quantity. So it’s really difficult for us to provide a price list. If you can share your detailed requirements and annual quantity, we’ll see what offer we can provide.

Q:3.Can l get some samples?

A:It depends. If only a few samples for personal use or replacement, I am afraid it’ll be difficult for us to provide because all of our motors are custom made and no stock available if there are no further needs. If just sample testing before the official order and our MOQ,price and other terms are acceptable,we’d love to provide samples.

Q4:Can you provide OEM or ODM service?

A:Yes,OEM and ODM are both available, we have the professional R&D dept which can provide professional solutions for you.

Q5:Can l visit your factory before we place an order?

A:welcome to visit our factory,wear every pleased if we have the chance to know each other more.

Q:6.What’s the lead time for a regular order?

A:For orders, the standard lead time is 15-20 days and this time can be shorter or longer based on the different model,period and quantity.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Robot Arm
Operating Speed: Low Speed
Excitation Mode: DC
Function: Driving
Casing Protection: Closed Type
Number of Poles: Can Be Choosen
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless motor

Where can individuals find reputable suppliers or manufacturers of micro gear motors?

Individuals looking for reputable suppliers or manufacturers of micro gear motors can consider the following reliable sources:

  • Online Directories: Online directories, such as Thomasnet, Alibaba, or GlobalSpec, provide comprehensive listings of suppliers and manufacturers across various industries. These directories often include detailed profiles, product catalogs, and customer reviews, making it easier to evaluate and connect with reputable micro gear motor suppliers.
  • Trade Shows and Exhibitions: Attending industry-specific trade shows and exhibitions offers an excellent opportunity to meet and connect with reputable micro gear motor manufacturers and suppliers. These events gather industry professionals, showcase the latest technologies, and provide a platform for networking and establishing business relationships.
  • Industry Associations: Industry associations, such as the Robotics Industries Association (RIA) or the National Electrical Manufacturers Association (NEMA), can provide valuable resources and directories of reputable micro gear motor manufacturers and suppliers. These associations often have strict membership criteria, ensuring that listed companies adhere to industry standards and best practices.
  • Referrals and Recommendations: Seek referrals or recommendations from colleagues, industry experts, or professionals who have experience working with micro gear motors. Their firsthand experiences can provide insights into reputable manufacturers or suppliers known for their quality products, reliable services, and customer support.
  • Online Research and Reviews: Conducting online research allows individuals to explore various manufacturers or suppliers of micro gear motors. Look for websites, online forums, or discussion boards that provide reviews, ratings, or testimonials from customers. Reading unbiased experiences and feedback can help identify reputable companies that consistently deliver high-quality products and excellent customer service.
  • Consulting with Industry Experts: Seek advice from industry experts, engineers, or consultants who specialize in micro gear motors. They often have extensive knowledge of the market, industry trends, and reputable manufacturers or suppliers. Consulting with experts can provide valuable insights and guidance in selecting the right supplier for specific requirements.

It is important to conduct due diligence when evaluating suppliers or manufacturers. Consider factors such as their reputation, years of experience in the industry, product quality, certifications, customer support, and delivery capabilities. Request samples, specifications, or references to assess their suitability for the intended application.

By utilizing these sources and conducting thorough research, individuals can find reputable suppliers or manufacturers of micro gear motors that meet their specific needs and ensure reliable and high-quality products.

brushless motor

Are there different types of micro gear motors, and how do they suit various applications?

Yes, there are different types of micro gear motors available, and each type is designed to suit specific applications based on their unique characteristics and performance capabilities. Here’s a detailed explanation of different types of micro gear motors and how they are suited for various applications:

1. DC Gear Motors:

DC (Direct Current) gear motors are widely used in various applications due to their simplicity, compact size, and versatility. They consist of a DC motor combined with a gearbox to provide torque multiplication and speed reduction. DC gear motors are available in different configurations, such as spur gear, planetary gear, and worm gear designs. Spur gear motors offer high torque output and are suitable for applications requiring moderate precision and efficiency. Planetary gear motors provide higher torque density, smooth operation, and increased efficiency, making them suitable for applications that require higher precision and compact design. Worm gear motors offer high torque output and are commonly used in applications that require low-speed operation and high gear ratios.

2. AC Gear Motors:

AC (Alternating Current) gear motors are primarily used in applications where a continuous power supply is available. They are typically used in machinery, appliances, and industrial equipment. AC gear motors are available in both synchronous and asynchronous (induction) designs. Synchronous AC gear motors operate at a fixed speed that is synchronized with the frequency of the AC power supply. They are suitable for applications that require constant speed and precise control, such as conveyor systems and robotics. Asynchronous AC gear motors operate at a slightly lower speed than synchronous motors and are commonly used in applications that require variable speed control, such as fans, pumps, and mixers.

3. Brushed and Brushless Gear Motors:

Micro gear motors can be classified into brushed and brushless types based on the type of motor technology used. Brushed gear motors have a commutator and brushes that make physical contact with the armature windings. They are cost-effective, simple in design, and provide good torque characteristics. Brushed gear motors are suitable for applications that require moderate precision, such as automotive systems, consumer electronics, and small appliances. On the other hand, brushless gear motors use electronic commutation instead of brushes and commutators. They offer higher efficiency, longer lifespan, and better speed control compared to brushed motors. Brushless gear motors are commonly used in applications that demand high precision, reliability, and efficiency, such as robotics, medical devices, and aerospace systems.

4. Stepper Gear Motors:

Stepper gear motors are designed to move in discrete steps or increments, making them suitable for applications that require precise positioning and control. They are widely used in applications such as 3D printers, CNC machines, robotics, and automation equipment. Stepper gear motors offer high torque at low speeds and can maintain position without the need for external feedback devices. They provide excellent control over acceleration, deceleration, and position accuracy, allowing for precise motion control in a wide range of applications.

5. Linear Gear Motors:

Linear gear motors, also known as linear actuators or linear motors, are designed to provide linear motion instead of rotational motion. They are used in applications that require precise linear positioning or actuation, such as medical devices, industrial automation, and robotics. Linear gear motors offer advantages such as high speed, high acceleration, precise control, and compact design. They can be either driven by DC or AC power sources, depending on the specific application requirements.

6. Precision Gear Motors:

Precision gear motors are designed to provide high accuracy, low backlash, and smooth operation. They are commonly used in applications that demand precise motion control and positioning, such as robotics, automation, and scientific instruments. Precision gear motors are typically constructed with high-quality materials, precision gears, and advanced control systems to ensure minimal error and high repeatability in motion control applications.

7. Micro Geared Stepper Motors:

Micro geared stepper motors combine the benefits of stepper motors and gear systems. They offer precise positional control, high torque at low speeds, and the ability to maintain position without power. Micro geared stepper motors are commonly used in applications such as robotics, camera systems, medical equipment, and consumer electronics where precise motion control and compact size are essential.

In summary, there are various types of micro gear motors available, each with its own advantages and suitability for specific applications. The choice of motor type depends on factors such as required torque, speed, precision, control, powerI apologize for the confusion.

brushless motor

Can you explain the advantages of using micro gear motors in small electronic devices?

Using micro gear motors in small electronic devices offers several advantages. Here are some key benefits:

1. Compact Size:

Micro gear motors are specifically designed to be small and lightweight, making them ideal for integration into small electronic devices. Their compact size allows for efficient utilization of limited space within the device, enabling designers to create sleek and portable products.

2. Precise Motion Control:

Micro gear motors provide precise motion control capabilities, allowing for accurate positioning and controlled movements in small electronic devices. This is essential for applications that require precise adjustments, such as camera autofocus, zoom controls, or robotic movements in miniature robots.

3. High Gear Ratio:

Micro gear motors often have higher gear ratios compared to larger gear motors. The gear mechanism in micro gear motors provides a greater reduction in rotational speed and an increase in torque output. This allows for efficient power transmission and enables the motor to generate sufficient torque despite its small size.

4. Energy Efficiency:

Micro gear motors are designed to operate efficiently with low power consumption. Their compact size reduces the amount of power required for operation, making them suitable for battery-powered devices or applications where energy efficiency is a priority. This helps to extend the battery life of portable electronic devices.

5. Low Noise and Vibration:

Micro gear motors are often engineered to minimize noise and vibration levels during operation. This is advantageous for small electronic devices, such as smartphones, where a quiet and smooth operation is desired. Reduced noise and vibration contribute to a better user experience and overall product satisfaction.

6. Reliability and Durability:

Micro gear motors are built to withstand the demands of continuous operation in small electronic devices. They are designed with high-quality materials and precision manufacturing techniques to ensure reliability and durability. This is crucial for electronic devices that may undergo frequent handling or experience various environmental conditions.

7. Cost-Effective:

Micro gear motors are generally cost-effective compared to larger gear motors. Their smaller size and simpler construction contribute to lower manufacturing costs. Additionally, their use in small electronic devices reduces the overall material and production costs of the device itself.

8. Integration Flexibility:

Micro gear motors offer flexibility in terms of integration into small electronic devices. They can be easily mounted or integrated into compact spaces, allowing for flexible design options. This flexibility enables designers to incorporate motion control capabilities into a wide range of small electronic devices.

Overall, the advantages of using micro gear motors in small electronic devices include their compact size, precise motion control, high gear ratio, energy efficiency, low noise and vibration, reliability, cost-effectiveness, and integration flexibility. These advantages contribute to the functionality, performance, and user experience of small electronic devices across various industries.

China Best Sales 36V 12V High Torque Gear Ratio 4.5W 7.8rpm Electric Micro Brush Mini DC Geared Box Motor with Wheels for Robot/ Vending Machine   vacuum pump distributorsChina Best Sales 36V 12V High Torque Gear Ratio 4.5W 7.8rpm Electric Micro Brush Mini DC Geared Box Motor with Wheels for Robot/ Vending Machine   vacuum pump distributors
editor by CX 2024-04-10

China Hot selling Low Noise 12V Geared Synchronous Motor for Quartz Heater vacuum pump electric

Product Description

micro gear Motor for swing fan/oven

1. Stator size is optional
2. Safe, reliable, low noise, good starting, long life
3. Strong power
Rated voltage 110~120V/220~240V-50/60Hz

Typical used:
Exhaust fan, air purifier, micro-oven, fan, induction cooker, refrigerator, pump, heater, hood oven, blwer, air conditioner, Heater machines, dehumidifiers
Thermal protector with 1 shot fuse or multi shot fuse

 

50SM40                  
                   
Application:-Home Appliance              
                  – Roaster                           
                   -Electrical Andiron              
                  – Monitor Equipment              
                   
Model
Rated Voltage Rated Frequency Speed No-load Current No-load Power Output Torque Starting Voltage Temperatuer  
(V) (Hz) (RPM) (mA) (W)  (kgf.cm) (V) Rising  
              (K)    
 
50SM40 24 15 15 ≤250  ≤7 ≥2 ≤20 ≤75  
 
  24 20 20 ≤250 ≤7 ≥1.5 ≤20 ≤75  
 
  110/120 50/60 11.5/13.8 ≤60  ≤7 ≥7 ≤96 ≤75  
 
  110/120 50/60 11.7/14 ≤60 ≤7 ≥6 ≤96 ≤75  
 
50SM40 110/120 50/60 56 ≤35 ≤7 ≥8 ≤96 ≤75  
 
  220/240 50/60 56 ≤35 ≤7 ≥8 ≤176 ≤75  
 
  220/240 50/60 33.3/40 ≤35 ≤7 ≥2.5 ≤176 ≤75  
 
  220/240 50/60 11.5/13.8 ≤35 ≤7 ≥8 ≤176 ≤75  
 
50SM40 220/240 50/60 11.7/14 ≤35  ≤7 ≥6 ≤176 ≤75  
                   

ABOUT US

CHINAMFG group was set up in 2006.we always focus on micro-motors for household electrical appliance and industry appliance since setting up.currently we have 2 professional micro-motor factories in China  which severally located in HangZhou city and HangZhou city.it has an area of 25,000 square CHINAMFG plants and more than 300 employees, annual output  is 3 million pcs and has 5 million pcs annual producing capacity.after several years development,we had built a great reputation in the market and got more and more customers’  trust in the world.
We  started from shaded pole motors  at beginning, up to now,our product  included of shaded pole motors,synchronous motors,stepping motors ,capacitor motors, BLDC motors, DC motors and compressors. Our product  are widely used for making refrigerators, freezers, micro-wave ovens, air warmers, air exhausters, ventilators,ovens, air filter, massage machines and many other equipments.
As a realiable quality guaranty,Ritscher has complete R&D departement,QC department,producing department,purchase department etc. has perfect producing equipment like Aluminum diecasting, Zinc diecasting, Sheet metal stamping, Plastic injection molding etc. also test/ detection device like multiplex temp measuring device, performance parameter inspection device, Phenol peptide solution pinhole tester,Anechoic room etc.
 
Endeavoring to provide the best product and service to customers,we always do the most effort to become an outstanding manufacturer of micro motors.
CHINAMFG is always willing to establish sincere business relationship with friends from all over the world.
Welcome contact with us!
 
Take CHINAMFG ,enjoy modern life!

Our company FAQ for you

(1) Q: What kind motors you can provide?
A:For now,we mainly provide Kitchen Hood Motor,DC Motor,Gear Motor,Fan Motor Refrigerator Motor,Hair Dryer Motor Blender Motor Mixer Motor,
Shade Pole Motor,Capacitor Motor,BLDC Motor PMDC Motor,Synchronous Motor,Stepping Motor etc.

(2) Q: Is it possible to visit your factory
A: Sure. But please kindly keep us posted a few days in advance. We need to check our
schedule to see if we are available then.

(3) Q: Can I get some samples
A: It depends. If only a few samples for personal use or replacement, I am afraid it will
be difficult for us to provide, because all of our motors are custom made and no stock
available if there is no further needs. If just sample testing before the official order and
our MOQ, price and other terms are acceptable, we’d love to provide samples.

(4) Q: Is there a MOQ for your motors?
A: Yes. The MOQ is between 1000~10,000pcs for different models after sample approval.
But it’s also okay for us to accept smaller lots like a few dozens, hundreds or thousands
For the initial 3 orders after sample approval.For samples, there is no MOQ requirement. But the less the better (like no more than 5pcs) on condition that the quantity is enough in case any change /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Household Appliances, Industrial, Power Tools, Car
Operating Speed: Low Speed
Operation Mode: Electric Motor
Magnetic Structure: Permanent Magnet
Function: Driving, Control
Structure: Rotating Pole Type (Armature Fixed)
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

Can gear motors be used in robotics, and if so, what are some notable applications?

Yes, gear motors are widely used in robotics due to their ability to provide torque, precise control, and compact size. They play a crucial role in various robotic applications, enabling the movement, manipulation, and control of robotic systems. Here are some notable applications of gear motors in robotics:

1. Robotic Arm Manipulation:

Gear motors are commonly used in robotic arms to provide precise and controlled movement. They enable the articulation of the arm’s joints, allowing the robot to reach different positions and orientations. Gear motors with high torque capabilities are essential for lifting, rotating, and manipulating objects with varying weights and sizes.

2. Mobile Robots:

Gear motors are employed in mobile robots, including wheeled robots and legged robots, to drive their locomotion. They provide the necessary torque and control for the robot to move, turn, and navigate in different environments. Gear motors with appropriate gear ratios ensure the robot’s mobility, stability, and maneuverability.

3. Robotic Grippers and End Effectors:

Gear motors are used in robotic grippers and end effectors to control the opening, closing, and gripping force. By integrating gear motors into the gripper mechanism, robots can grasp and manipulate objects of various shapes, sizes, and weights. The gear motors enable precise control over the gripping action, allowing the robot to handle delicate or fragile objects with care.

4. Autonomous Drones and UAVs:

Gear motors are utilized in the propulsion systems of autonomous drones and unmanned aerial vehicles (UAVs). They drive the propellers or rotors, providing the necessary thrust and control for the drone’s flight. Gear motors with high power-to-weight ratios, efficient energy conversion, and precise speed control are crucial for achieving stable and maneuverable flight in drones.

5. Humanoid Robots:

Gear motors are integral to the movement and functionality of humanoid robots. They are used in robotic joints, such as hips, knees, and shoulders, to enable human-like movements. Gear motors with appropriate torque and speed capabilities allow humanoid robots to walk, run, climb stairs, and perform complex motions resembling human actions.

6. Robotic Exoskeletons:

Gear motors play a vital role in robotic exoskeletons, which are wearable robotic devices designed to augment human strength and assist in physical tasks. Gear motors are used in the exoskeleton’s joints and actuators, providing the necessary torque and control to enhance human abilities. They enable users to perform tasks with reduced effort, assist in rehabilitation, or provide support in physically demanding environments.

These are just a few notable applications of gear motors in robotics. Their versatility, torque capabilities, precise control, and compact size make them indispensable components in various robotic systems. Gear motors enable robots to perform complex tasks, move with agility, interact with the environment, and assist humans in a wide range of applications, from industrial automation to healthcare and exploration.

gear motor

Can you explain the role of backlash in gear motors and how it’s managed in design?

Backlash plays a significant role in gear motors and is an important consideration in their design and operation. Backlash refers to the slight clearance or play between the teeth of gears in a gear system. It affects the precision, accuracy, and responsiveness of the gear motor. Here’s an explanation of the role of backlash in gear motors and how it is managed in design:

1. Role of Backlash:

Backlash in gear motors can have both positive and negative effects:

  • Compensation for Misalignment: Backlash can help compensate for minor misalignments between gears, shafts, or the load. It allows a small amount of movement before engaging the next set of teeth, reducing the risk of damage due to misalignment. This can be particularly beneficial in applications where precise alignment is challenging or subject to variations.
  • Negative Impact on Accuracy and Responsiveness: Backlash can introduce a delay or “dead zone” in the motion transmission. When changing the direction of rotation or reversing the load, the gear teeth must first overcome the clearance or play before engaging in the opposite direction. This delay can reduce the overall accuracy, responsiveness, and repeatability of the gear motor, especially in applications that require precise positioning or rapid changes in direction or speed.

2. Managing Backlash in Design:

Designers employ various techniques to manage and minimize backlash in gear motors:

  • Tight Manufacturing Tolerances: Proper manufacturing techniques and tight tolerances can help minimize backlash. Precision machining and quality control during the production of gears and gear components ensure closer tolerances, reducing the amount of play between gear teeth.
  • Preload or Pre-tensioning: Applying a preload or pre-tensioning force to the gear system can help reduce backlash. This technique involves introducing an initial force or tension that eliminates the clearance between gear teeth. It ensures immediate contact and engagement of the gear teeth, minimizing the dead zone and improving the overall responsiveness and accuracy of the gear motor.
  • Anti-Backlash Gears: Anti-backlash gears are designed specifically to minimize or eliminate backlash. They typically feature modifications to the gear tooth profile, such as modified tooth shapes or special tooth arrangements, to reduce clearance. Anti-backlash gears can be used in gear motor designs to improve precision and minimize the effects of backlash.
  • Backlash Compensation: In some cases, backlash compensation techniques can be employed. These techniques involve monitoring the position or movement of the load and applying control algorithms to compensate for the backlash. By accounting for the clearance and adjusting the control signals accordingly, the effects of backlash can be mitigated, improving accuracy and responsiveness.

3. Application-Specific Considerations:

The management of backlash in gear motors should be tailored to the specific application requirements:

  • Positioning Accuracy: Applications that require precise positioning, such as robotics or CNC machines, may require tighter backlash control to ensure accurate and repeatable movements.
  • Dynamic Response: Applications that involve rapid changes in direction or speed, such as high-speed automation or servo control systems, may require reduced backlash to maintain responsiveness and minimize overshoot or lag.
  • Load Characteristics: The nature of the load and its impact on the gear system should be considered. Heavy loads or applications with significant inertial forces may require additional backlash management techniques to maintain stability and accuracy.

In summary, backlash in gear motors can affect precision, accuracy, and responsiveness. While it can compensate for misalignments, backlash may introduce delays and reduce the overall performance of the gear motor. Designers manage backlash through tight manufacturing tolerances, preload techniques, anti-backlash gears, and backlash compensation methods. The management of backlash depends on the specific application requirements, considering factors such as positioning accuracy, dynamic response, and load characteristics.

gear motor

What are the different types of gears used in gear motors, and how do they impact performance?

Various types of gears are used in gear motors, each with its unique characteristics and impact on performance. The choice of gear type depends on the specific requirements of the application, including torque, speed, efficiency, noise level, and space constraints. Here’s a detailed explanation of the different types of gears used in gear motors and their impact on performance:

1. Spur Gears:

Spur gears are the most common type of gears used in gear motors. They have straight teeth that are parallel to the gear’s axis and mesh with another spur gear to transmit power. Spur gears provide high efficiency, reliable operation, and cost-effectiveness. However, they can generate significant noise due to the meshing of teeth, and they may produce axial thrust forces. Spur gears are suitable for applications that require high torque transmission and moderate to high rotational speeds.

2. Helical Gears:

Helical gears have angled teeth that are cut at an angle to the gear’s axis. This helical tooth configuration enables gradual engagement and smoother tooth contact, resulting in reduced noise and vibration compared to spur gears. Helical gears provide higher load-carrying capacity and are suitable for applications that require high torque transmission and moderate to high rotational speeds. They are commonly used in gear motors where low noise operation is desired, such as in automotive applications and industrial machinery.

3. Bevel Gears:

Bevel gears have teeth that are cut on a conical surface. They are used to transmit power between intersecting shafts, usually at right angles. Bevel gears can have straight teeth (straight bevel gears) or curved teeth (spiral bevel gears). These gears provide efficient power transmission and precise motion control in applications where shafts need to change direction. Bevel gears are commonly used in gear motors for applications such as steering systems, machine tools, and printing presses.

4. Worm Gears:

Worm gears consist of a worm (a type of screw) and a mating gear called a worm wheel or worm gear. The worm has a helical thread that meshes with the worm wheel, resulting in a compact and high gear reduction ratio. Worm gears provide high torque transmission, low noise operation, and self-locking properties, which prevent reverse motion. They are commonly used in gear motors for applications that require high gear reduction and locking capabilities, such as in lifting mechanisms, conveyor systems, and machine tools.

5. Planetary Gears:

Planetary gears, also known as epicyclic gears, consist of a central sun gear, multiple planet gears, and an outer ring gear. The planet gears mesh with both the sun gear and the ring gear, creating a compact and efficient gear system. Planetary gears offer high torque transmission, high gear reduction ratios, and excellent load distribution. They are commonly used in gear motors for applications that require high torque and compact size, such as in robotics, automotive transmissions, and industrial machinery.

6. Rack and Pinion:

Rack and pinion gears consist of a linear rack (a straight toothed bar) and a pinion gear (a spur gear with a small diameter). The pinion gear meshes with the rack to convert rotary motion into linear motion or vice versa. Rack and pinion gears provide precise linear motion control and are commonly used in gear motors for applications such as linear actuators, CNC machines, and steering systems.

The choice of gear type in a gear motor depends on factors such as the desired torque, speed, efficiency, noise level, and space constraints. Each type of gear offers specific advantages and impacts the performance of the gear motor differently. By selecting the appropriate gear type, gear motors can be optimized for their intended applications, ensuring efficient and reliable power transmission.

China Hot selling Low Noise 12V Geared Synchronous Motor for Quartz Heater   vacuum pump electricChina Hot selling Low Noise 12V Geared Synchronous Motor for Quartz Heater   vacuum pump electric
editor by CX 2024-04-10

China Standard High Power Electric 12V Planetary Gear/Reduction Micro Mini Electronic Outboard Boat DC Motor for Medical Equipment/Car Conversion Kit vacuum pump connector

Product Description

Product Description

24ZYJ DC Worm Gear Motor
Basic Info
Item Data
Tem Rise 40K
Working Tem (-20ºC~+80ºC)
Insulation Resistance 100MΩ min  500VDC
Surge Test 500VAC for 1min
Insulation Class E
Weight 120g

 

 

The specification of DC Electrical Worm Gear Reducer Motor with high torque

Specification
PN Rated Voltage Initial Speed Ratio Power Noload Speed Noload Current Rated Speed Rated Current Rated Torque Stall Torque Stall Current
V DC rpm 1:xxx W rpm mA rpm mA Kg.cm Kg.cm mA
24ZYJ4632-65A 12 6500 100 3 65 80 50 200 0.75 2 1000
24ZYJ4632-28A 12 5000 180 3 28 80 23 200 1.6 3 1000
24ZYJ4632-38A 12 9500 250 3 38 100 33 250 2.6 5 1500

 

 

The drawing of DC Electrical Worm Gear Reducer Motor with high torque


Below are only some typical models, for more specification or a  customed motor, pls contact us.

About our company
CHINAMFG motors designs brush, brushless, stepper, hysteresis and linear motors to meet customers requirements.

Our motors use standard and special components with customer selected torque/speed requirements that can be modified to your applications.

The AC/DC gear motors are based CHINAMFG to distinct magetic circuits that optimize motor design for high speed low torque and low speed high torque.

These motors give you lower rotational losses, excellent thermal transfer, interchangeable end caps, easily sealed. Options include connectors, encoders, shaft modifications, dimensional changes, etc.

CHINAMFG motor owns professional sales team and engineer team with more than 10 years experience in motor industry, based on China mainland handling overseas business for years, we know your needs better than others.

CHINAMFG Sonicare Toothbrush Motor and Thermostatic Valve Hysteresis Motor are our hot products on sell in 2017 with highly quality level and competitive price.

Please kindly contact us to get a catalogue.

Terms of Trade

Terms of price FOB,CIF,CFR,EXW,DDP,etc.
Terms of payment 100% T/T in advance for samples
Bulk quantity payment way can be negotited
Warranty 12 months limited warranty once the items are delivered to the buyer.
Lead time Usually within 2 weeks for trial orders, within 3 weeks for bulk orders.
Package Carton o plywood pallet.
Place of loading ZheJiang , HangZhou, etc.
Shipment carrier Items are usually shipped via Fedex,DHL, TNT,UPS,EMS
for trial orders and via vessel for bulk orders.
Delivery time Usually within 5 working days by Express                         15-30 working days by vessel

Our promise to our Customers:
1.  Answer customer’s inquiry within 2 working days.
2.  Reply to our customer questions & Concerns within 3 working days.
3.  Acknowledge Customer purchase orders within 24 hours. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Beauty Equipments
Operating Speed: High Speed
Excitation Mode: Excited
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

What safety considerations should be taken into account when working with micro gear motors?

When working with micro gear motors, it is important to consider the following safety considerations:

  • Electrical Safety: Micro gear motors are powered by electricity, so it is crucial to follow electrical safety practices. Ensure that the motor is properly grounded, and use appropriate insulation and protective measures to prevent electrical shock hazards. Avoid working on the motor while it is energized.
  • Mechanical Hazards: Micro gear motors may have rotating components, such as shafts and gears, that can pose mechanical hazards. Take precautions to prevent accidental contact with moving parts. Use protective covers or enclosures to shield the motor, and avoid reaching into the motor assembly during operation.
  • Proper Installation: Follow the manufacturer’s instructions for the correct installation of the micro gear motor. Improper installation can lead to malfunctions, increased risks, and reduced performance. Ensure that the motor is securely mounted and aligned according to the recommended guidelines.
  • Overloading and Overheating: Avoid overloading the micro gear motor beyond its specified limits. Exceeding the motor’s maximum torque or operating it at excessively high temperatures can lead to performance degradation, premature wear, and potential safety hazards. Monitor the motor’s operating conditions and ensure adequate cooling to prevent overheating.
  • Environmental Considerations: Consider the environmental conditions in which the micro gear motor will be operated. If the motor is exposed to moisture, dust, or extreme temperatures, choose a motor with appropriate protection ratings or implement additional protective measures, such as sealing or thermal management solutions.
  • Control and Automation: When integrating micro gear motors into control systems or automation setups, ensure that the control circuits and interfaces are designed and implemented correctly. Improper wiring, incorrect signal levels, or faulty control circuits can lead to unpredictable motor behavior, safety risks, or damage to the motor and other components.
  • Maintenance and Inspection: Regularly inspect and maintain the micro gear motor according to the manufacturer’s recommendations. This includes cleaning, lubrication, and checking for signs of wear or damage. Perform maintenance tasks with the motor turned off and power sources disconnected to prevent accidental activation.
  • Personal Protective Equipment (PPE): Depending on the specific application and associated hazards, it may be necessary to wear appropriate personal protective equipment, such as safety glasses, gloves, or protective clothing, when working with micro gear motors. Assess the risks and adhere to safety guidelines to determine the necessary PPE.

Paying attention to these safety considerations when working with micro gear motors helps mitigate risks, ensures proper functionality, and promotes a safe working environment. It is important to familiarize oneself with the specific safety guidelines provided by the manufacturer and adhere to any local safety regulations or standards applicable to the industry or application.

brushless motor

How does the control system of micro gear motors contribute to precision in small-scale applications?

The control system of micro gear motors plays a crucial role in achieving precision in small-scale applications. Here’s how it contributes to precision:

  • Speed Control: The control system allows precise regulation of the motor’s speed, enabling accurate and consistent movement in small-scale applications. By adjusting the voltage or current supplied to the motor, the control system can control the rotational speed of the motor shaft, ensuring precise motion according to the application’s requirements.
  • Position Control: Micro gear motors with advanced control systems, such as stepper motors, offer precise position control. The control system sends specific signals or pulses to the motor, causing it to move in discrete steps or increments. This allows for accurate positioning in small-scale applications where precise movements and alignment are critical. The control system can also maintain the motor’s position without the need for external feedback devices, enhancing precision and simplifying the overall system.
  • Torque Control: In some applications, maintaining consistent torque is essential for precision. The control system of micro gear motors can regulate the torque output, ensuring that the motor delivers the required amount of force accurately and consistently. This is particularly important in tasks that involve delicate or precise movements, such as robotics, where excessive torque can cause damage or imprecise results.
  • Feedback Mechanisms: Many micro gear motors incorporate feedback mechanisms into their control systems. These mechanisms provide information about the motor’s performance, such as speed, position, or current, and allow the control system to make adjustments in real-time. Feedback mechanisms, such as encoders or sensors, enable closed-loop control, where the control system continuously monitors and adjusts the motor’s operation to maintain precision and accuracy.
  • Control Algorithms: The control system of micro gear motors often incorporates sophisticated control algorithms that optimize performance and precision. These algorithms can include proportional-integral-derivative (PID) controllers, adaptive control, or advanced motion control algorithms. By analyzing the input signals, sensory feedback, and desired output, these algorithms can adjust the motor’s operation to minimize errors, disturbances, or deviations from the desired motion, thus enhancing precision in small-scale applications.

By integrating precise speed control, position control, torque control, feedback mechanisms, and advanced control algorithms, the control system of micro gear motors enables precise and accurate operation in small-scale applications. This precision is crucial for tasks that require fine movements, tight tolerances, or intricate positioning, such as robotics, automation, medical devices, and miniature mechanisms.

brushless motor

Can you explain the advantages of using micro gear motors in small electronic devices?

Using micro gear motors in small electronic devices offers several advantages. Here are some key benefits:

1. Compact Size:

Micro gear motors are specifically designed to be small and lightweight, making them ideal for integration into small electronic devices. Their compact size allows for efficient utilization of limited space within the device, enabling designers to create sleek and portable products.

2. Precise Motion Control:

Micro gear motors provide precise motion control capabilities, allowing for accurate positioning and controlled movements in small electronic devices. This is essential for applications that require precise adjustments, such as camera autofocus, zoom controls, or robotic movements in miniature robots.

3. High Gear Ratio:

Micro gear motors often have higher gear ratios compared to larger gear motors. The gear mechanism in micro gear motors provides a greater reduction in rotational speed and an increase in torque output. This allows for efficient power transmission and enables the motor to generate sufficient torque despite its small size.

4. Energy Efficiency:

Micro gear motors are designed to operate efficiently with low power consumption. Their compact size reduces the amount of power required for operation, making them suitable for battery-powered devices or applications where energy efficiency is a priority. This helps to extend the battery life of portable electronic devices.

5. Low Noise and Vibration:

Micro gear motors are often engineered to minimize noise and vibration levels during operation. This is advantageous for small electronic devices, such as smartphones, where a quiet and smooth operation is desired. Reduced noise and vibration contribute to a better user experience and overall product satisfaction.

6. Reliability and Durability:

Micro gear motors are built to withstand the demands of continuous operation in small electronic devices. They are designed with high-quality materials and precision manufacturing techniques to ensure reliability and durability. This is crucial for electronic devices that may undergo frequent handling or experience various environmental conditions.

7. Cost-Effective:

Micro gear motors are generally cost-effective compared to larger gear motors. Their smaller size and simpler construction contribute to lower manufacturing costs. Additionally, their use in small electronic devices reduces the overall material and production costs of the device itself.

8. Integration Flexibility:

Micro gear motors offer flexibility in terms of integration into small electronic devices. They can be easily mounted or integrated into compact spaces, allowing for flexible design options. This flexibility enables designers to incorporate motion control capabilities into a wide range of small electronic devices.

Overall, the advantages of using micro gear motors in small electronic devices include their compact size, precise motion control, high gear ratio, energy efficiency, low noise and vibration, reliability, cost-effectiveness, and integration flexibility. These advantages contribute to the functionality, performance, and user experience of small electronic devices across various industries.

China Standard High Power Electric 12V Planetary Gear/Reduction Micro Mini Electronic Outboard Boat DC Motor for Medical Equipment/Car Conversion Kit   vacuum pump connector	China Standard High Power Electric 12V Planetary Gear/Reduction Micro Mini Electronic Outboard Boat DC Motor for Medical Equipment/Car Conversion Kit   vacuum pump connector
editor by CX 2024-04-03

China Custom 12V 24V 48V Micro DC Gear Brushless BLDC Electric Motor Planetary/ Supr Gearbox Motor with Gearbox Customized for Mower/Drone /Automatic Door /Electric Window vacuum pump connector

Product Description

Product Description

In such cases, BLDC Motor with Planetary Gear Box is appropriate for your products: Your projects require self locking and more running & holding torque. You are looking to exact position control on your mechanical products.

BLDC Motor BL42R50M12 with Planetary Gear Box is recommended for projects involving smart products and medical equipment, such as door opener, foldable fitness equipment, smart switch, servo motors and etc.

Please consider the following requirements before requesting customization: speed, holding torque, space available in your product, or other significant factors.

We offer various customization options to meet specific needs:
-Wider supply voltage range, additional voltage types,
-Extended temperature range, suitable for low and high-temperature environments
-Suitable for vacuum environments
-Modified for high-speed or high-load applications
-Motors that meet increased electrical or mechanical tolerance requirements

-Configurable shaft length and second shaft end -Modified shaft sizes and gear configurations

Drawing:

Characteristic of BLDC Motor

Innovative Product Display

Product Usage

Company Profile

Certifications

Exhibition

FAQ

FAQ
Q: Can I visit your factory before we place the order?

A: Yes. You are welcome to visit our factory.

Q: Do you accept customization?
A: Of course. We have a strong design team. Any problems will get our technical  answer.

Q: How soon can I get the price?
A: Usually we quote within 24 hours after getting your inquiry (Except weekend and holidays). If you are very urgent to get the price, please 
contact us by email or other  way so that we can quote.

Q: What’s the delivery time of samples?
A: 1-3 weeks.

Q: What’s the delivery time of mass production?
A: Normally one month. It depends on your order quantity or other special situation.

Q: What’s your payment terms?
A: T/T, Paypal, Western Union, and other payment ways is available. Please contact  us which payment ways you need before placing the order. Payment terms: 30%-50% deposit, the balance before shipment.

Q: What’s the shipping way?
A: We accept shipping way by Express (DHL, UPS, Fedex, etc), by Sea and other shipping way. 
Please contact us if you need other shipping  way before shipment.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 2-6
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brushless motor

Can you recommend resources for further learning about the principles and applications of micro gear motors?

Yes, here are some recommended resources for further learning about the principles and applications of micro gear motors:

  • Manufacturer Websites: Visit the websites of micro gear motor manufacturers. Many reputable manufacturers provide resources such as product datasheets, technical specifications, application notes, and white papers. These resources can offer valuable insights into the principles, design considerations, and specific applications of micro gear motors.
  • Industry Publications and Journals: Subscribe to or explore industry publications and journals related to robotics, automation, or electromechanical systems. Examples include “IEEE Transactions on Robotics,” “Robotics and Automation Magazine,” or “Control Engineering.” These publications often feature articles, case studies, and research papers that delve into the principles, advancements, and real-world applications of micro gear motors.
  • Books and Reference Materials: Look for books specifically dedicated to the principles and applications of micro gear motors. Some recommended titles include “Gearmotor Handbook” by Steve Antonich, “Handbook of Small Electric Motors” edited by William H. Yeadon, or “Mechatronics: Principles and Applications” by Godfrey C. Onwubolu. These resources provide comprehensive information, theories, and practical guidance on micro gear motors.
  • Online Courses and Tutorials: Online learning platforms, such as Coursera, Udemy, or edX, offer courses on robotics, mechatronics, and motor control. These courses cover topics related to micro gear motors, including their principles, design, control, and applications. Completing these courses can provide in-depth knowledge and practical skills in working with micro gear motors.
  • Technical Forums and Communities: Engage in technical forums and communities dedicated to robotics, motor control, or mechatronics. Websites like Stack Exchange (specifically the Robotics or Electrical Engineering sections), Reddit’s r/AskElectronics or r/robotics, or specialized forums like All About Circuits or Robotics Stack Exchange can be valuable platforms for asking questions, discussing principles, and learning from experts and enthusiasts in the field.
  • Research Papers and Academic Publications: Explore academic databases such as IEEE Xplore, ScienceDirect, or Google Scholar to find research papers and academic publications related to micro gear motors. These papers provide in-depth analyses, experimental results, and theoretical discussions on various aspects of micro gear motors, including their principles, modeling, control algorithms, and emerging applications.

By utilizing these resources, individuals can gain a deeper understanding of the principles and applications of micro gear motors. It is recommended to combine multiple sources for a comprehensive and well-rounded learning experience.

brushless motor

How does the construction of micro gear motors contribute to their durability and longevity?

The construction of micro gear motors plays a crucial role in determining their durability and longevity. A well-designed and robust construction ensures that the motor can withstand the demands of its intended application and operate reliably over an extended period of time. Here’s a detailed explanation of how the construction of micro gear motors contributes to their durability and longevity:

1. Housing and Enclosure:

The housing and enclosure of a micro gear motor provide protection to its internal components. The housing is typically made of durable materials such as metal or high-quality plastics that can withstand mechanical stress, temperature variations, and environmental factors. The housing also helps to prevent dust, moisture, and other contaminants from entering the motor, reducing the risk of damage or malfunction. A sturdy and well-sealed housing enhances the durability and longevity of the motor by safeguarding its internal components from external influences.

2. Gear Train:

The gear train in a micro gear motor is responsible for transferring power from the motor to the output shaft. The gears are precision-engineered components that are designed to mesh smoothly and efficiently. The use of high-quality materials, such as hardened steel or engineered plastics, ensures that the gears can withstand the mechanical forces and stresses imposed during operation. Proper lubrication and maintenance of the gear train are also essential for reducing wear and extending the lifespan of the motor. A well-constructed and properly maintained gear train contributes to the overall durability and longevity of the micro gear motor.

3. Bearings:

Bearings are critical components in micro gear motors as they allow smooth rotation and support the shafts and gears. High-quality bearings, such as ball bearings or sleeve bearings, are used to minimize friction, reduce wear, and provide stable and reliable operation. The selection of bearings with appropriate load capacity and durability is crucial for ensuring the longevity of the motor. Additionally, proper lubrication and periodic maintenance of the bearings are necessary to prevent premature failure and maintain optimal performance over time.

4. Motor Windings and Cores:

The motor windings and cores are integral parts of a micro gear motor’s construction. The windings are typically made of copper or other conductive materials and are wound around a laminated core. The quality and insulation of the winding wires, as well as the core material, contribute to the motor’s efficiency and durability. High-quality windings and cores minimize energy losses, reduce heat generation, and ensure reliable electrical performance. Proper insulation and protection of the windings from mechanical stress, moisture, and temperature fluctuations are essential for the motor’s longevity.

5. Brushes and Commutator (in brushed motors):

In brushed micro gear motors, the brushes and commutator play a critical role in the motor’s construction and durability. The brushes are made of carbon or other materials with good electrical conductivity and wear resistance. They make contact with the commutator, which is a segmented copper or metal ring, to control the flow of current and generate the necessary electromagnetic forces. The brushes and commutator should be designed and manufactured to minimize wear, reduce sparking, and ensure consistent electrical contact. Regular maintenance, such as brush replacement, is necessary to maintain optimal performance and extend the lifespan of brushed micro gear motors.

6. Motor Cooling:

Efficient cooling is important for the durability and longevity of micro gear motors, especially those that operate at high speeds or under heavy loads. Motor constructions may incorporate cooling mechanisms such as fins, fans, or heat sinks to dissipate heat generated during operation. Proper cooling helps prevent overheating, which can lead to insulation breakdown, component degradation, and premature failure. Well-designed cooling systems improve the motor’s thermal management and contribute to its overall durability and longevity.

7. Quality Control and Manufacturing Processes:

The construction quality and manufacturing processes employed in the production of micro gear motors significantly impact their durability and longevity. Manufacturers that adhere to strict quality control standards, precision machining, and assembly processes produce motors with higher reliability and durability. Thorough testing, inspections, and quality assurance protocols ensure that the motors meet or exceed specified performance standards. By employing robust construction techniques and rigorous quality control measures, manufacturers can enhance the durability and longevity of micro gear motors.

In conclusion, the construction of micro gear motors directly influences their durability and longevity. A combination of factors such as sturdy housing, reliable gear train, high-quality bearings, well-designed windings and cores, optimized cooling, and adherence to quality control standards all contribute to the motor’s ability to withstand the demands of its application and operate reliably over an extended period. By selecting motors with robust constructions and performing regular maintenance, users can maximize the durability“`html

How does the construction of micro gear motors contribute to their durability and longevity?

The construction of micro gear motors plays a crucial role in determining their durability and longevity. A well-designed and robust construction ensures that the motor can withstand the demands of its intended application and operate reliably over an extended period of time. Here’s a detailed explanation of how the construction of micro gear motors contributes to their durability and longevity:

1. Housing and Enclosure:

The housing and enclosure of a micro gear motor provide protection to its internal components. The housing is typically made of durable materials such as metal or high-quality plastics that can withstand mechanical stress, temperature variations, and environmental factors. The housing also helps to prevent dust, moisture, and other contaminants from entering the motor, reducing the risk of damage or malfunction. A sturdy and well-sealed housing enhances the durability and longevity of the motor by safeguarding its internal components from external influences.

2. Gear Train:

The gear train in a micro gear motor is responsible for transferring power from the motor to the output shaft. The gears are precision-engineered components that are designed to mesh smoothly and efficiently. The use of high-quality materials, such as hardened steel or engineered plastics, ensures that the gears can withstand the mechanical forces and stresses imposed during operation. Proper lubrication and maintenance of the gear train are also essential for reducing wear and extending the lifespan of the motor. A well-constructed and properly maintained gear train contributes to the overall durability and longevity of the micro gear motor.

3. Bearings:

Bearings are critical components in micro gear motors as they allow smooth rotation and support the shafts and gears. High-quality bearings, such as ball bearings or sleeve bearings, are used to minimize friction, reduce wear, and provide stable and reliable operation. The selection of bearings with appropriate load capacity and durability is crucial for ensuring the longevity of the motor. Additionally, proper lubrication and periodic maintenance of the bearings are necessary to prevent premature failure and maintain optimal performance over time.

4. Motor Windings and Cores:

The motor windings and cores are integral parts of a micro gear motor’s construction. The windings are typically made of copper or other conductive materials and are wound around a laminated core. The quality and insulation of the winding wires, as well as the core material, contribute to the motor’s efficiency and durability. High-quality windings and cores minimize energy losses, reduce heat generation, and ensure reliable electrical performance. Proper insulation and protection of the windings from mechanical stress, moisture, and temperature fluctuations are essential for the motor’s longevity.

5. Brushes and Commutator (in brushed motors):

In brushed micro gear motors, the brushes and commutator play a critical role in the motor’s construction and durability. The brushes are made of carbon or other materials with good electrical conductivity and wear resistance. They make contact with the commutator, which is a segmented copper or metal ring, to control the flow of current and generate the necessary electromagnetic forces. The brushes and commutator should be designed and manufactured to minimize wear, reduce sparking, and ensure consistent electrical contact. Regular maintenance, such as brush replacement, is necessary to maintain optimal performance and extend the lifespan of brushed micro gear motors.

6. Motor Cooling:

Efficient cooling is important for the durability and longevity of micro gear motors, especially those that operate at high speeds or under heavy loads. Motor constructions may incorporate cooling mechanisms such as fins, fans, or heat sinks to dissipate heat generated during operation. Proper cooling helps prevent overheating, which can lead to insulation breakdown, component degradation, and premature failure. Well-designed cooling systems improve the motor’s thermal management and contribute to its overall durability and longevity.

7. Quality Control and Manufacturing Processes:

The construction quality and manufacturing processes employed in the production of micro gear motors significantly impact their durability and longevity. Manufacturers that adhere to strict quality control standards, precision machining, and assembly processes produce motors with higher reliability and durability. Thorough testing, inspections, and quality assurance protocols ensure that the motors meet or exceed specified performance standards. By employing robust construction techniques and rigorous quality control measures, manufacturers can enhance the durability and longevity of micro gear motors.

In conclusion, the construction of micro gear motors directly influences their durability and longevity. A combination of factors such as sturdy housing, reliable gear train, high-quality bearings, well-designed windings and cores, optimized cooling, and adherence to quality control standards all contribute to the motor’s ability to withstand the demands of its application and operate reliably over an extended period. By selecting motors with robust constructions and performing regular maintenance, users cmaximize the durability and longevity of micro gear motors, ensuring their continued performance and reliability.

brushless motor

How does the gear ratio in micro gear motors impact their torque and speed characteristics?

The gear ratio in micro gear motors plays a crucial role in determining their torque and speed characteristics. Here’s a detailed explanation of how the gear ratio affects these attributes:

1. Torque:

The gear ratio directly influences the torque output of a micro gear motor. A higher gear ratio corresponds to a higher torque output, while a lower gear ratio results in lower torque output. The gear mechanism in micro gear motors provides torque multiplication, allowing the motor to generate higher torque than its inherent capability. This is beneficial in applications that require higher force or torque, such as moving heavy loads or overcoming resistance. By choosing an appropriate gear ratio, micro gear motors can deliver the required torque for specific tasks while maintaining a compact size.

2. Speed:

Conversely, the gear ratio inversely affects the speed of a micro gear motor. A higher gear ratio leads to a lower output speed, while a lower gear ratio results in a higher output speed. This is because the gear reduction mechanism slows down the rotational speed of the motor output shaft. Micro gear motors with high gear ratios are commonly used in applications that require precise and slow movement, such as robotics or positioning systems. On the other hand, micro gear motors with lower gear ratios are suitable for applications that demand higher rotational speeds, such as in fan or blower systems.

3. Trade-off:

It’s important to note that there is a trade-off between torque and speed in micro gear motors. As the gear ratio increases to provide higher torque, the output speed decreases. Conversely, if the gear ratio is decreased to increase the speed, the torque output decreases. This trade-off is a result of the mechanical advantage provided by the gear system. Designers must carefully consider the requirements of the specific application to determine the optimal gear ratio that balances torque and speed according to the desired performance.

4. Efficiency:

The gear ratio also influences the overall efficiency of the micro gear motor. While gears provide torque multiplication, they can introduce mechanical losses due to friction and backlash. Higher gear ratios generally result in lower efficiency due to increased friction losses. It’s important to select gear systems with high-quality materials, precise manufacturing, and proper lubrication to minimize these losses and maximize the overall efficiency of the micro gear motor.

5. Backlash:

Backlash refers to the slight play or movement between the teeth of gears. It is a common characteristic in gear systems and can impact the precision and responsiveness of the micro gear motor. The gear ratio can affect the amount of backlash present in the system. Higher gear ratios may exhibit more backlash, which can introduce inaccuracies in motion control applications. Design considerations should be made to minimize backlash, such as using gears with tighter tolerances or incorporating anti-backlash mechanisms.

In summary, the gear ratio in micro gear motors has a direct impact on their torque and speed characteristics. Higher gear ratios provide increased torque output but lower speed, while lower gear ratios result in higher speed but lower torque. Designers must carefully select the appropriate gear ratio to meet the specific requirements of the application, considering factors such as desired torque, speed, efficiency, and backlash.

China Custom 12V 24V 48V Micro DC Gear Brushless BLDC Electric Motor Planetary/ Supr Gearbox Motor with Gearbox Customized for Mower/Drone /Automatic Door /Electric Window   vacuum pump connector	China Custom 12V 24V 48V Micro DC Gear Brushless BLDC Electric Motor Planetary/ Supr Gearbox Motor with Gearbox Customized for Mower/Drone /Automatic Door /Electric Window   vacuum pump connector
editor by CX 2024-03-30

China Hot selling Long Life 72mm 12V 24V 0.382nm 0.478nm Big Torque 120 Watt 150W Electric Brushless DC Planetary Gear Motor for Ventilators vacuum pump connector

Product Description

BGBL72 DC Brushless Motor 
Environmental Conditions -20ºC~50ºC
Insulation Clase B
Protection class IP44
Noise ≤65dB
Number of Poles/ phases 8/3
Lifespan >5000h

Electrical Specifications
Model RATED LOAD NO LOAD   STALL
Voltage   Power Speed Torque  Current    Speed    Current    Torque   Current 
V W rpm N.m A rpm A   N.m   A  
BG72BL24120 24 120 3000 0.382 6.6 4000 1   1.146   19.8
BG72BL24150 24 150 3000 0.478 8.5 4000 1.1 1.434 25.5
We can also customize products according to customer requirements.

 Planetary Gear Motor Technical Data-BG
Ratio 3.65 5.36  6.55  8.63 13.53  18.92 24.65 28.05 33.92 44.69 58.22 67.08 81.11
Output shaft speed(rpm) 822 560 458 348 222 159 122 107 88 67 52 45 37
Allowable torque(N.m) 1.25 1.84 2.25 2.97 4.19 5.85 7.63 8.68 10.5 13.83 18.01 18.71 22.62
Reduction stage 1 1 1 1 2 2 2 2 2 2 2 3 3

 

Established in 1994, HangZhou BG Motor Factory is a professional manufacturer of brushless DC motors, brushed DC motors, planetary gear motors, worm gear motors, Universal motors and AC motors. We have a plant area of 6000 square meters, multiple patent certificates, and we have the independent design and development capabilities and strong technical force, with an annual output of more than 1 million units. Since the beginning of its establishment, BG motor has focused on the overall solution of motors. We manufacture and design motors, provide professional customized services, respond quickly to customer needs, and actively help customers to solve problems. Our motor products are exported to 20 countries, including the United States, Germany, Italy, the United Kingdom, Poland, Slovenia, Switzerland, Sweden, Singapore, South Korea etc.
Our founder, Mr. Sun, has more than 40 years of experience in motor technology, and our other engineers also have more than 15 years of experience, and 60% of our staff have more than 10 years of experience, and we can assure you that the quality of our motors is top notch.
The products cover AGV, underwater robots, robots, sewing machine industry, automobiles, medical equipment, automatic doors, lifting equipment, industrial equipment and have a wide range of applications.
We strive for CHINAMFG in the quality of each product, and we are only a small and sophisticated manufacturer.
Our vision: Drive the world CHINAMFG and make life better!

Q:1.What kind of motors can you provide?

A:At present, we mainly produce brushless DC motors, brush DC motors, AC motors, Universal Motors; the power of the motor is less than 5000W, and the diameter of the motor is not more than 200mm;

Q:2.Can you send me a price list?

A:For all of our motors, they are customized based on different requirements like lifetime, noise,voltage,and shaft etc. The price also varies according to annual quantity. So it’s really difficult for us to provide a price list. If you can share your detailed requirements and annual quantity, we’ll see what offer we can provide.

Q:3.Can l get some samples?

A:It depends. If only a few samples for personal use or replacement, I am afraid it’ll be difficult for us to provide because all of our motors are custom made and no stock available if there are no further needs. If just sample testing before the official order and our MOQ,price and other terms are acceptable,we’d love to provide samples.

Q4:Can you provide OEM or ODM service?

A:Yes,OEM and ODM are both available, we have the professional R&D dept which can provide professional solutions for you.

Q5:Can l visit your factory before we place an order?

A:welcome to visit our factory,wear every pleased if we have the chance to know each other more.

Q:6.What’s the lead time for a regular order?

A:For orders, the standard lead time is 15-20 days and this time can be shorter or longer based on the different model,period and quantity.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Robot Arm
Operating Speed: Low Speed
Excitation Mode: DC
Function: Driving
Casing Protection: Closed Type
Number of Poles: Can Be Choosen
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

Are there innovations or emerging technologies in the field of gear motor design?

Yes, there are several innovations and emerging technologies in the field of gear motor design. These advancements aim to improve the performance, efficiency, compactness, and reliability of gear motors. Here are some notable innovations and emerging technologies in gear motor design:

1. Miniaturization and Compact Design:

Advancements in manufacturing techniques and materials have enabled the miniaturization of gear motors without compromising their performance. Gear motors with compact designs are highly sought after in applications where space is limited, such as robotics, medical devices, and consumer electronics. Innovative approaches like micro-gear motors and integrated motor-gear units are being developed to achieve smaller form factors while maintaining high torque and efficiency.

2. High-Efficiency Gearing:

New gear designs focus on improving efficiency by reducing friction and mechanical losses. Advanced gear manufacturing techniques, such as precision machining and 3D printing, allow for the creation of intricate gear tooth profiles that optimize power transmission and minimize losses. Additionally, the use of high-performance materials, coatings, and lubricants helps reduce friction and wear, improving overall gear motor efficiency.

3. Magnetic Gearing:

Magnetic gearing is an emerging technology that replaces traditional mechanical gears with magnetic fields to transmit torque. It utilizes the interaction of permanent magnets to transfer power, eliminating the need for physical gear meshing. Magnetic gearing offers advantages such as high efficiency, low noise, compactness, and maintenance-free operation. While still being developed and refined, magnetic gearing holds promise for various applications, including gear motors.

4. Integrated Electronics and Controls:

Gear motor designs are incorporating integrated electronics and controls to enhance performance and functionality. Integrated motor drives and controllers simplify system integration, reduce wiring complexity, and allow for advanced control features. These integrated solutions offer precise speed and torque control, intelligent feedback mechanisms, and connectivity options for seamless integration into automation systems and IoT (Internet of Things) platforms.

5. Smart and Condition Monitoring Capabilities:

New gear motor designs incorporate smart features and condition monitoring capabilities to enable predictive maintenance and optimize performance. Integrated sensors and monitoring systems can detect abnormal operating conditions, track performance parameters, and provide real-time feedback for proactive maintenance and troubleshooting. This helps prevent unexpected failures, extend the lifespan of gear motors, and improve overall system reliability.

6. Energy-Efficient Motor Technologies:

Gear motor design is influenced by advancements in energy-efficient motor technologies. Brushless DC (BLDC) motors and synchronous reluctance motors (SynRM) are gaining popularity due to their higher efficiency, better power density, and improved controllability compared to traditional brushed DC and induction motors. These motor technologies, when combined with optimized gear designs, contribute to overall system energy savings and performance improvements.

These are just a few examples of the innovations and emerging technologies in gear motor design. The field is continuously evolving, driven by the need for more efficient, compact, and reliable motion control solutions in various industries. Gear motor manufacturers and researchers are actively exploring new materials, manufacturing techniques, control strategies, and system integration approaches to meet the evolving demands of modern applications.

gear motor

Are there environmental benefits to using gear motors in certain applications?

Yes, there are several environmental benefits associated with the use of gear motors in certain applications. Gear motors offer advantages that can contribute to increased energy efficiency, reduced resource consumption, and lower environmental impact. Here’s a detailed explanation of the environmental benefits of using gear motors:

1. Energy Efficiency:

Gear motors can improve energy efficiency in various ways:

  • Torque Conversion: Gear reduction allows gear motors to deliver higher torque output while operating at lower speeds. This enables the motor to perform tasks that require high torque, such as lifting heavy loads or driving machinery with high inertia, more efficiently. By matching the motor’s power characteristics to the load requirements, gear motors can operate closer to their peak efficiency, minimizing energy waste.
  • Controlled Speed: Gear reduction provides finer control over the motor’s rotational speed. This allows for more precise speed regulation, reducing the likelihood of energy overconsumption and optimizing energy usage.

2. Reduced Resource Consumption:

The use of gear motors can lead to reduced resource consumption and environmental impact:

  • Smaller Motor Size: Gear reduction allows gear motors to deliver higher torque with smaller, more compact motors. This reduction in motor size translates to reduced material and resource requirements during manufacturing. It also enables the use of smaller and lighter equipment, which can contribute to energy savings during operation and transportation.
  • Extended Motor Lifespan: The gear mechanism in gear motors helps reduce the load and stress on the motor itself. By distributing the load more evenly, gear motors can help extend the lifespan of the motor, reducing the need for frequent replacements and the associated resource consumption.

3. Noise Reduction:

Gear motors can contribute to a quieter and more environmentally friendly working environment:

  • Noise Dampening: Gear reduction can help reduce the noise generated by the motor. The gear mechanism acts as a noise dampener, absorbing and dispersing vibrations and reducing overall noise emission. This is particularly beneficial in applications where noise reduction is important, such as residential areas, offices, or noise-sensitive environments.

4. Precision and Control:

Gear motors offer enhanced precision and control, which can lead to environmental benefits:

  • Precise Positioning: Gear motors, especially stepper motors and servo motors, provide precise positioning capabilities. This accuracy allows for more efficient use of resources, minimizing waste and optimizing the performance of machinery or systems.
  • Optimized Control: Gear motors enable precise control over speed, torque, and movement. This control allows for better optimization of processes, reducing energy consumption and minimizing unnecessary wear and tear on equipment.

In summary, using gear motors in certain applications can have significant environmental benefits. Gear motors offer improved energy efficiency, reduced resource consumption, noise reduction, and enhanced precision and control. These advantages contribute to lower energy consumption, reduced environmental impact, and a more sustainable approach to power transmission and control. When selecting motor systems for specific applications, considering the environmental benefits of gear motors can help promote energy efficiency and sustainability.

gear motor

Are there specific considerations for selecting the right gear motor for a particular application?

When selecting a gear motor for a specific application, several considerations need to be taken into account. The choice of the right gear motor is crucial to ensure optimal performance, efficiency, and reliability. Here’s a detailed explanation of the specific considerations for selecting the right gear motor for a particular application:

1. Torque Requirement:

The torque requirement of the application is a critical factor in gear motor selection. Determine the maximum torque that the gear motor needs to deliver to perform the required tasks. Consider both the starting torque (the torque required to initiate motion) and the operating torque (the torque required to sustain motion). Select a gear motor that can provide adequate torque to handle the load requirements of the application. It’s important to account for any potential torque spikes or variations during operation.

2. Speed Requirement:

Consider the desired speed range or specific speed requirements of the application. Determine the rotational speed (in RPM) that the gear motor needs to achieve to meet the application’s performance criteria. Select a gear motor with a suitable gear ratio that can achieve the desired speed at the output shaft. Ensure that the gear motor can maintain the required speed consistently and accurately throughout the operation.

3. Duty Cycle:

Evaluate the duty cycle of the application, which refers to the ratio of operating time to rest or idle time. Consider whether the application requires continuous operation or intermittent operation. Determine the duty cycle’s impact on the gear motor, including factors such as heat generation, cooling requirements, and potential wear and tear. Select a gear motor that is designed to handle the expected duty cycle and ensure long-term reliability and durability.

4. Environmental Factors:

Take into account the environmental conditions in which the gear motor will operate. Consider factors such as temperature extremes, humidity, dust, vibrations, and exposure to chemicals or corrosive substances. Choose a gear motor that is specifically designed to withstand and perform optimally under the anticipated environmental conditions. This may involve selecting gear motors with appropriate sealing, protective coatings, or materials that can resist corrosion and withstand harsh environments.

5. Efficiency and Power Requirements:

Consider the desired efficiency and power consumption of the gear motor. Evaluate the power supply available for the application and select a gear motor that operates within the specified voltage and current ranges. Assess the gear motor’s efficiency to ensure that it maximizes power transmission and minimizes wasted energy. Choosing an efficient gear motor can contribute to cost savings and reduced environmental impact.

6. Physical Constraints:

Assess the physical constraints of the application, including space limitations, mounting options, and integration requirements. Consider the size, dimensions, and weight of the gear motor to ensure it can be accommodated within the available space. Evaluate the mounting options and compatibility with the application’s mechanical structure. Additionally, consider any specific integration requirements, such as shaft dimensions, connectors, or interfaces that need to align with the application’s design.

7. Noise and Vibration:

Depending on the application, noise and vibration levels may be critical factors. Evaluate the acceptable noise and vibration levels for the application’s environment and operation. Choose a gear motor that is designed to minimize noise and vibration, such as those with helical gears or precision engineering. This is particularly important in applications that require quiet operation or where excessive noise and vibration may cause issues or discomfort.

By considering these specific factors when selecting a gear motor for a particular application, you can ensure that the chosen gear motor meets the performance requirements, operates efficiently, and provides reliable and consistent power transmission. It’s important to consult with gear motor manufacturers or experts to determine the most suitable gear motor based on the specific application’s needs.

China Hot selling Long Life 72mm 12V 24V 0.382nm 0.478nm Big Torque 120 Watt 150W Electric Brushless DC Planetary Gear Motor for Ventilators   vacuum pump connector	China Hot selling Long Life 72mm 12V 24V 0.382nm 0.478nm Big Torque 120 Watt 150W Electric Brushless DC Planetary Gear Motor for Ventilators   vacuum pump connector
editor by CX 2024-03-28