Tag Archives: dc gear motor

China high quality 12V 24V 48V Variable Speed High Power Electric Car Brushless DC Planetary Gear Servo Motor for Micro Electric Pump Fan Chain Grinder vacuum pump and compressor

Product Description

 

Product Description

 

model Number of poles Phase Rated voltage Rated speed Continuous locked-rotor torque Rated torque Rated power Peak torque
Units     VDC RPM N.m N.m W N.m
42BYA075B030C-02 4 3 24 3000 0.192 0.16 50 0.48

 

model Peak current Torque constant Back EMF Motor length Motor length voltage range Range of rotation weight
Units A Nm/A V/KRPM g.cMoment of inertia mm VDC RPM Kg
42BYA075B030C-02 9.6 0.05 3.947 14.6 134 24~48 1000~3000 1.0 

Product Parameters

Quiet stable and reliable for long life operation

1.Voltage: 24 VDC
2.Number of phases: 3
3.Number of levels: 4
4.Line-to-line resistance: 1.45±10%ohms
5.Line-to-line inductance: 1.27±20%mH
6.Rated current: 3.2A
7.Rated power: 50W
8.No-load speed: 4300 rpm
9.Insulation class: B
10.Reduction ratio: 1:58.22
11.Output torque: 7.5 N.m
12.Output speed: 51.5 rpm
13.We can design the special voltage and shaft and so on

Jintian Imp. & Exp Co. Ltd opened in 2008 to facilitate international trade between China and the rest of the world. The young firm grew quickly, gaining a reputation for integrity, efficiency and astute knowledge of local market.

Throughout its 10 more years history, CHINAMFG has sought to connect customers with opportunities. While that purpose has remained unchanged, CHINAMFG has succeeded by positioning itself where the growth is and by aligning itself to the major economic trends of the time.

After being funded in ZheJiang , China to facilitate local and international trade, CHINAMFG expanded rapidly to capture the increasing flow of commerce between Asia, Europe and North America. Since then, CHINAMFG has continued to grow in line with changing trade patterns and developing markets, pioneering modern international trade practices in many countries. Built over 10 years, this global network is highly distinctive, difficult to replicate and ideally positioned for the world’s top trade corridors.

Our ability to connect customers remains absolutely central to the company’s strategy today, which aims to establish CHINAMFG as the world”s leading international trade company. Above all, we remain dedicated to the purpose that CHINAMFG was founded to serve: Connecting customers to opportunities, enabling businesses to CHINAMFG and economies to prosper, and helping people to fulfill their hopes and dreams.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Samples:
US$ 162/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

What role do materials play in the design and manufacturing of reliable micro gear motors?

Materials play a critical role in the design and manufacturing of reliable micro gear motors. Here’s how they contribute:

  • Gear Material: The choice of material for the gears is crucial for the overall performance and reliability of micro gear motors. Gears are subjected to high loads, friction, and wear during operation. Common materials used for gears include steel, stainless steel, brass, and various engineering plastics. The selected material should have high strength, good wear resistance, and low friction characteristics to ensure smooth and efficient power transmission, minimize gear failure, and prolong the motor’s lifespan.
  • Motor Housing: The material used for the motor housing affects its durability, thermal management, and protection against environmental factors. Common materials for motor housings include aluminum, stainless steel, and engineering plastics. The housing should provide structural integrity, efficient heat dissipation, and protection against dust, moisture, and other contaminants to maintain the motor’s reliability and performance in various operating conditions.
  • Bearing Materials: Bearings are essential components in micro gear motors as they reduce friction and enable smooth rotation of the motor shaft. The choice of bearing material is crucial for ensuring reliable and long-lasting operation. Common bearing materials include stainless steel, ceramics, and various self-lubricating materials. The selected material should have low friction, high load-bearing capacity, and resistance to wear and corrosion to minimize power losses, maintain efficiency, and extend the motor’s lifespan.
  • Magnetic Materials: In motors that utilize permanent magnets, such as brushless DC (BLDC) motors, the choice of magnetic material is crucial for generating and maintaining magnetic fields. Neodymium magnets are commonly used due to their high magnetic strength and energy efficiency. The quality and characteristics of the magnetic material directly impact the motor’s performance, torque output, and overall efficiency.
  • Electrical Insulation: Micro gear motors often involve the flow of electrical current through the motor windings. Insulation materials, such as enamel or varnish, are used to electrically isolate the windings and prevent short circuits. The selected insulation material should have high dielectric strength, good thermal stability, and resistance to environmental factors to ensure reliable electrical insulation and prevent motor failures.

By carefully selecting appropriate materials for gears, motor housing, bearings, magnetic components, and electrical insulation, designers and manufacturers can optimize the reliability, efficiency, and performance of micro gear motors. The materials should be chosen based on the specific requirements of the application, considering factors such as load capacity, operating conditions, environmental factors, and cost-effectiveness.

brushless motor

Can you provide examples of innovative uses of micro gear motors in modern technology?

Micro gear motors have found innovative applications across various modern technologies. Here are some examples:

  • Drones: Micro gear motors are commonly used in drones to drive the propellers and control the flight. Their compact size, lightweight design, and precise control capabilities make them ideal for achieving stable and agile flight maneuvers.
  • Robotics: Micro gear motors play a crucial role in robotics, powering the joints and actuators of robotic arms, grippers, and humanoid robots. Their precise control, compact form factor, and high torque-to-size ratio enable robots to perform delicate and precise manipulations in industrial automation, medical procedures, and research applications.
  • Automotive Systems: Micro gear motors are used in various automotive systems, such as power windows, door locks, and seat adjustments. Their small size and high torque allow for efficient and reliable operation of these mechanisms within the limited space available in vehicles.
  • Medical Devices: Micro gear motors are utilized in medical devices and equipment, including surgical robots, prosthetics, insulin pumps, and lab automation systems. Their precise control, compact size, and low power consumption make them suitable for applications requiring fine movements, accurate dosing, and miniaturization.
  • Consumer Electronics: Micro gear motors are incorporated into numerous consumer electronic devices. They can be found in cameras for lens movement and autofocus, wearable devices for haptic feedback and vibration, and home appliances for precise control of valves, fans, and robotic components.
  • Smart Home Systems: Micro gear motors are employed in smart home systems to control various functions, such as motorized curtains, blinds, and awnings. Their precise control, quiet operation, and compatibility with automation systems allow for convenient and customizable control of these home features.

These examples represent just a few of the many innovative uses of micro gear motors in modern technology. Their versatility, precision, and compact design make them valuable components in a wide range of applications, contributing to advancements in automation, robotics, electronics, and beyond.

brushless motor

In which applications are micro gear motors commonly used due to their compact size?

Micro gear motors find applications in various industries where their compact size is advantageous. Here are some common applications where micro gear motors are commonly used:

1. Micro Robotics:

Micro gear motors are extensively used in micro robotics applications. These motors provide the necessary torque and precision for controlling the movements of miniature robot platforms, robotic arms, grippers, and other robotic components. Their small size allows for intricate and precise motion control in confined spaces.

2. Medical Devices:

In the medical field, micro gear motors are employed in various devices and equipment, including medical robots, surgical instruments, diagnostic devices, and drug delivery systems. Their compact size enables integration into portable and handheld medical devices while ensuring precise and controlled movements for accurate diagnostics and minimally invasive procedures.

3. Automotive Systems:

Micro gear motors are used in automotive systems that require compact and lightweight actuators. They find applications in power windows, door locks, seat adjustment mechanisms, mirror adjustment, and HVAC controls. The small size of micro gear motors allows for efficient utilization of space within the vehicle while providing reliable and precise operation.

4. Consumer Electronics:

Micro gear motors are found in various consumer electronic devices. They are used in camera autofocus mechanisms, zoom controls, robotic toys, smart home devices, and wearable technology. The compact size of micro gear motors enables seamless integration into these devices, providing precise and controlled motion capabilities.

5. Industrial Automation:

In industrial automation applications, micro gear motors are utilized in small-scale machinery, robotics, and automated systems. They are used in conveyor systems, pick-and-place machines, miniature actuators, and precision positioning systems. The small size and high gearing ratio of micro gear motors allow for accurate and repeatable positioning in tight spaces.

6. Aerospace and Defense:

Micro gear motors are employed in aerospace and defense applications, including drones, unmanned aerial vehicles (UAVs), miniature satellites, and guidance systems. Their compact size and lightweight properties are crucial for reducing the overall weight and improving maneuverability in these applications.

7. Scientific and Laboratory Equipment:

Micro gear motors are used in scientific instruments, laboratory equipment, and research devices. They find applications in precision syringe pumps, sample handling systems, microfluidic devices, and motion control mechanisms for optical instruments. The compact size and precise motion control capabilities of micro gear motors support accurate and controlled experimentation and analysis.

8. Industrial and Manufacturing:

In industrial and manufacturing settings, micro gear motors are utilized in small-scale machinery, conveyors, packaging equipment, and assembly systems. They provide compact and efficient motion control for precise material handling, part positioning, and automation processes.

These are just a few examples of the many applications where micro gear motors are commonly used due to their compact size. Their small form factor and precise motion control capabilities make them ideal for applications where space constraints, weight reduction, and accurate motion control are crucial factors.

China high quality 12V 24V 48V Variable Speed High Power Electric Car Brushless DC Planetary Gear Servo Motor for Micro Electric Pump Fan Chain Grinder   vacuum pump and compressor	China high quality 12V 24V 48V Variable Speed High Power Electric Car Brushless DC Planetary Gear Servo Motor for Micro Electric Pump Fan Chain Grinder   vacuum pump and compressor
editor by CX 2024-05-17

China factory 12V High Speed Micro Hydraulic Motor Planetary Gearbox 49mm DC Gear Motor vacuum pump belt

Product Description

12v High Speed Micro Hydraulic Motor Planetary Gearbox  49mm Dc Gear Motor

1)Product Description:
    
1°size:Diameter 49mm 
    2°lifespan:5000 hours 
    3°gear material: plastic or brass
    4°IP rate:IP54

 

 

 

 

2)Complete Specification:

3)Motor Drawing:

Shaft drawing:

 

   

4)Application:

 

 welding machine, electrical household, CHINAMFG machinery, office intelligent equipment, hotel leisure, antomated machine and so on.

Motor Voltage: DC12V, 24V,42V,48V,90V,110V ,300V

Motor Rated Power:15W, 25W,30W,45W,65W, 95W,120W,150W,180W

Motor no-load Speed:15RPM, 30RPM,60RPM,80RM,120RPM,150RPM,180RPM,200RPM,220RPM.

5)Factory show:

Transfer way:

 

7)RFQ:

Q: Are you trading company or manufacturer ?

A: We are Integration of industry and trade, with over 20 years experience in DC worm gear motor. Our company have accumulated skilled production line, complete management and powerful research support, which could match all of the customers’ requirements and make them satisfaction.
 

Q: What is your main product?

DC Motor: Gear motor, Square motor, Stepped motor, and Micro motor
-Welding equipment: Wire feeder, Welding rod, Welding Torch, Earth clamp, Electrode holder, and Rectifier
 

Q: What if I don’t know which DC motor I need?

A: Don’t worry, Send as much information as you can, our team will help you find the right 1 you are looking for.
 

Q: What is your terms of payment ?

A: Payment=1000USD, 30% T/T in advance ,balance before shippment.
If you have another question, pls feel free to contact us as below:
 

Q: How to delivery:

A: By sea – Buyer appoint forwarder, or our sales team find suitable forwarder for buyers. 

By air – Buyer offer collect express account, or our sales team find suitable express for buyers. (Mostly for sample)
Others – Actually,samples send by DHL,UPS, TNT and Fedex etc. We arrange to delivery goods to some place from China appointed by buyers.

Q: How long is your delivery time?
A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Constant Speed
Excitation Mode: Excited
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brushless motor

Where can individuals find reputable suppliers or manufacturers of micro gear motors?

Individuals looking for reputable suppliers or manufacturers of micro gear motors can consider the following reliable sources:

  • Online Directories: Online directories, such as Thomasnet, Alibaba, or GlobalSpec, provide comprehensive listings of suppliers and manufacturers across various industries. These directories often include detailed profiles, product catalogs, and customer reviews, making it easier to evaluate and connect with reputable micro gear motor suppliers.
  • Trade Shows and Exhibitions: Attending industry-specific trade shows and exhibitions offers an excellent opportunity to meet and connect with reputable micro gear motor manufacturers and suppliers. These events gather industry professionals, showcase the latest technologies, and provide a platform for networking and establishing business relationships.
  • Industry Associations: Industry associations, such as the Robotics Industries Association (RIA) or the National Electrical Manufacturers Association (NEMA), can provide valuable resources and directories of reputable micro gear motor manufacturers and suppliers. These associations often have strict membership criteria, ensuring that listed companies adhere to industry standards and best practices.
  • Referrals and Recommendations: Seek referrals or recommendations from colleagues, industry experts, or professionals who have experience working with micro gear motors. Their firsthand experiences can provide insights into reputable manufacturers or suppliers known for their quality products, reliable services, and customer support.
  • Online Research and Reviews: Conducting online research allows individuals to explore various manufacturers or suppliers of micro gear motors. Look for websites, online forums, or discussion boards that provide reviews, ratings, or testimonials from customers. Reading unbiased experiences and feedback can help identify reputable companies that consistently deliver high-quality products and excellent customer service.
  • Consulting with Industry Experts: Seek advice from industry experts, engineers, or consultants who specialize in micro gear motors. They often have extensive knowledge of the market, industry trends, and reputable manufacturers or suppliers. Consulting with experts can provide valuable insights and guidance in selecting the right supplier for specific requirements.

It is important to conduct due diligence when evaluating suppliers or manufacturers. Consider factors such as their reputation, years of experience in the industry, product quality, certifications, customer support, and delivery capabilities. Request samples, specifications, or references to assess their suitability for the intended application.

By utilizing these sources and conducting thorough research, individuals can find reputable suppliers or manufacturers of micro gear motors that meet their specific needs and ensure reliable and high-quality products.

brushless motor

What challenges or limitations might be associated with the use of micro gear motors?

Micro gear motors, despite their many advantages, also come with certain challenges and limitations. Here are some of them:

  • Size and Space Constraints: Micro gear motors are designed to be compact and small in size, which can be advantageous in many applications. However, the small size can also limit the power output and torque capabilities of the motor, making them unsuitable for applications that require high power or high torque.
  • Heat Dissipation: Micro gear motors can generate heat during operation, especially when subjected to high loads or continuous use. The compact size and limited surface area of the motor can make heat dissipation challenging, potentially leading to overheating and reduced performance or lifespan. Proper heat dissipation strategies such as cooling fans or heat sinks may be required in certain applications.
  • Noise and Vibration: Due to the mechanical nature of gear systems, micro gear motors can produce noise and vibration during operation. The noise and vibration levels can vary depending on the quality of the gears and the design of the motor. In applications where noise or vibration is a concern, additional measures such as noise-reducing enclosures or vibration dampening techniques may be necessary.
  • Limited Lifespan: Micro gear motors, like any mechanical system, have a limited lifespan. The continuous operation, high loads, and friction within the gear system can contribute to wear and tear over time. Regular maintenance, lubrication, and periodic replacement of worn-out components may be required to ensure optimal performance and longevity.
  • Cost: Micro gear motors, especially those with advanced features or high precision, can be relatively expensive compared to other motor types. The cost of manufacturing, materials, and specialized components can contribute to the overall cost. Additionally, the need for additional accessories such as controllers or drivers may further increase the cost of implementing micro gear motors in certain applications.

Despite these challenges and limitations, micro gear motors offer unique advantages and are suitable for a wide range of applications. Understanding the specific requirements and limitations of the motor can help in selecting the appropriate type and optimizing its performance in a given application.

brushless motor

In which applications are micro gear motors commonly used due to their compact size?

Micro gear motors find applications in various industries where their compact size is advantageous. Here are some common applications where micro gear motors are commonly used:

1. Micro Robotics:

Micro gear motors are extensively used in micro robotics applications. These motors provide the necessary torque and precision for controlling the movements of miniature robot platforms, robotic arms, grippers, and other robotic components. Their small size allows for intricate and precise motion control in confined spaces.

2. Medical Devices:

In the medical field, micro gear motors are employed in various devices and equipment, including medical robots, surgical instruments, diagnostic devices, and drug delivery systems. Their compact size enables integration into portable and handheld medical devices while ensuring precise and controlled movements for accurate diagnostics and minimally invasive procedures.

3. Automotive Systems:

Micro gear motors are used in automotive systems that require compact and lightweight actuators. They find applications in power windows, door locks, seat adjustment mechanisms, mirror adjustment, and HVAC controls. The small size of micro gear motors allows for efficient utilization of space within the vehicle while providing reliable and precise operation.

4. Consumer Electronics:

Micro gear motors are found in various consumer electronic devices. They are used in camera autofocus mechanisms, zoom controls, robotic toys, smart home devices, and wearable technology. The compact size of micro gear motors enables seamless integration into these devices, providing precise and controlled motion capabilities.

5. Industrial Automation:

In industrial automation applications, micro gear motors are utilized in small-scale machinery, robotics, and automated systems. They are used in conveyor systems, pick-and-place machines, miniature actuators, and precision positioning systems. The small size and high gearing ratio of micro gear motors allow for accurate and repeatable positioning in tight spaces.

6. Aerospace and Defense:

Micro gear motors are employed in aerospace and defense applications, including drones, unmanned aerial vehicles (UAVs), miniature satellites, and guidance systems. Their compact size and lightweight properties are crucial for reducing the overall weight and improving maneuverability in these applications.

7. Scientific and Laboratory Equipment:

Micro gear motors are used in scientific instruments, laboratory equipment, and research devices. They find applications in precision syringe pumps, sample handling systems, microfluidic devices, and motion control mechanisms for optical instruments. The compact size and precise motion control capabilities of micro gear motors support accurate and controlled experimentation and analysis.

8. Industrial and Manufacturing:

In industrial and manufacturing settings, micro gear motors are utilized in small-scale machinery, conveyors, packaging equipment, and assembly systems. They provide compact and efficient motion control for precise material handling, part positioning, and automation processes.

These are just a few examples of the many applications where micro gear motors are commonly used due to their compact size. Their small form factor and precise motion control capabilities make them ideal for applications where space constraints, weight reduction, and accurate motion control are crucial factors.

China factory 12V High Speed Micro Hydraulic Motor Planetary Gearbox 49mm DC Gear Motor   vacuum pump belt	China factory 12V High Speed Micro Hydraulic Motor Planetary Gearbox 49mm DC Gear Motor   vacuum pump belt
editor by CX 2024-05-16

China supplier Hot Sale 100W 200W 400W Brushless DC Gear Motor supplier

Product Description

Hot Sale 100w 200w 400w Brushless DC Gear Motor

 

Brushless DC motor (BLDC) is made up of motor and driver,
which is a kind of typical product of mechanical and electrical
and electrical integration.

It is highly regarded by the market as its small volume, low noise,
high efficiency, a wide range of speed control and steady working
state with less inaccuracy.

                               

Note: If this model is not what you want, please freely tell us about your requirement. We will provide with you a suitable motor solution and price soon.

Our Company

Related Products

FAQ

1 Q: What’s your MOQ?
   A: 1 unit is acceptable.  

2 Q: What about your warranty for your 1 phase AC gear motor?
 
 A: One year.

3 Q: Do you provide OEM service with customer-logo?
   A: Yes, we could do OEM orders, but we mainly focus on our own brand.

4 Q: How about your payment terms?
   
A: TT, western union and Paypal. 100% payment in advance for orders less $5,000. 30% deposit and balance before delivery for orders over $5,000.

5 Q: How about your packing?
   
A: Carton, Plywood case and foam inside. If you need more, we can pack all the goods with pallet. 

6 Q: What information should be given, if I buy 1 phase AC gear motor from you?
   
A: Rated power, gearbox ratio, input speed, mounting position. More details, better!

7 Q: How do you deliver the 1 phase ac gear motor?
   
A: We will compare and choose the most suitable ways of delivery by sea, air or express courier.

We hope you will enjoy cooperating with us.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools
Operating Speed: Low Speed
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 2
Structure and Working Principle: Brushless
Samples:
US$ 99/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

How is the efficiency of a gear motor measured, and what factors can affect it?

The efficiency of a gear motor is a measure of how effectively it converts electrical input power into mechanical output power. It indicates the motor’s ability to minimize losses and maximize its energy conversion efficiency. The efficiency of a gear motor is typically measured using specific methods, and several factors can influence it. Here’s a detailed explanation:

Measuring Efficiency:

The efficiency of a gear motor is commonly measured by comparing the mechanical output power (Pout) to the electrical input power (Pin). The formula to calculate efficiency is:

Efficiency = (Pout / Pin) * 100%

The mechanical output power can be determined by measuring the torque (T) produced by the motor and the rotational speed (ω) at which it operates. The formula for mechanical power is:

Pout = T * ω

The electrical input power can be measured by monitoring the current (I) and voltage (V) supplied to the motor. The formula for electrical power is:

Pin = V * I

By substituting these values into the efficiency formula, the efficiency of the gear motor can be calculated as a percentage.

Factors Affecting Efficiency:

Several factors can influence the efficiency of a gear motor. Here are some notable factors:

  • Friction and Mechanical Losses: Friction between moving parts, such as gears and bearings, can result in mechanical losses and reduce the overall efficiency of the gear motor. Minimizing friction through proper lubrication, high-quality components, and efficient design can help improve efficiency.
  • Gearing Efficiency: The design and quality of the gears used in the gear motor can impact its efficiency. Gear trains can introduce mechanical losses due to gear meshing, misalignment, or backlash. Using well-designed gears with proper tooth profiles and minimizing gear train losses can improve efficiency.
  • Motor Type and Construction: Different types of motors (e.g., brushed DC, brushless DC, AC induction) have varying efficiency characteristics. Motor construction, such as the quality of magnetic materials, winding resistance, and rotor design, can also affect efficiency. Choosing motors with higher efficiency ratings can improve overall gear motor efficiency.
  • Electrical Losses: Electrical losses, such as resistive losses in motor windings or in the motor drive circuitry, can reduce efficiency. Minimizing resistance, optimizing motor drive electronics, and using efficient control algorithms can help mitigate electrical losses.
  • Load Conditions: The operating conditions and load characteristics placed on the gear motor can impact its efficiency. Heavy loads, high speeds, or frequent acceleration and deceleration can increase losses and reduce efficiency. Matching the gear motor’s specifications to the application requirements and optimizing load conditions can improve efficiency.
  • Temperature: Elevated temperatures can significantly affect the efficiency of a gear motor. Excessive heat can increase resistive losses, reduce lubrication effectiveness, and affect the magnetic properties of motor components. Proper cooling and thermal management techniques are essential to maintain optimal efficiency.

By considering these factors and implementing measures to minimize losses and optimize performance, the efficiency of a gear motor can be enhanced. Manufacturers often provide efficiency specifications for gear motors, allowing users to select motors that best meet their efficiency requirements for specific applications.

gear motor

What is the significance of gear reduction in gear motors, and how does it affect efficiency?

Gear reduction plays a significant role in gear motors as it enables the motor to deliver higher torque while reducing the output speed. This feature has several important implications for gear motors, including enhanced power transmission, improved control, and potential trade-offs in terms of efficiency. Here’s a detailed explanation of the significance of gear reduction in gear motors and its effect on efficiency:

Significance of Gear Reduction:

1. Increased Torque: Gear reduction allows gear motors to generate higher torque output compared to a motor without gears. By reducing the rotational speed at the output shaft, gear reduction increases the mechanical advantage of the system. This increased torque is beneficial in applications that require high torque to overcome resistance, such as lifting heavy loads or driving machinery with high inertia.

2. Improved Control: Gear reduction enhances the control and precision of gear motors. By reducing the speed, gear reduction allows for finer control over the motor’s rotational movement. This is particularly important in applications that require precise positioning or accurate speed control. The gear reduction mechanism enables gear motors to achieve smoother and more controlled movements, reducing the risk of overshooting or undershooting the desired position.

3. Load Matching: Gear reduction helps match the motor’s power characteristics to the load requirements. Different applications have varying torque and speed requirements. Gear reduction allows the gear motor to achieve a better match between the motor’s power output and the specific requirements of the load. It enables the motor to operate closer to its peak efficiency by optimizing the torque-speed trade-off.

Effect on Efficiency:

While gear reduction offers several advantages, it can also affect the efficiency of gear motors. Here’s how gear reduction impacts efficiency:

1. Mechanical Efficiency: The gear reduction process introduces mechanical components such as gears, bearings, and lubrication systems. These components introduce additional friction and mechanical losses into the system. As a result, some energy is lost in the form of heat during the gear reduction process. The efficiency of the gear motor is influenced by the quality of the gears, the lubrication used, and the overall design of the gear system. Well-designed and properly maintained gear systems can minimize these losses and optimize mechanical efficiency.

2. System Efficiency: Gear reduction affects the overall system efficiency by impacting the motor’s electrical efficiency. In gear motors, the motor typically operates at higher speeds and lower torques compared to a direct-drive motor. The overall system efficiency takes into account both the electrical efficiency of the motor and the mechanical efficiency of the gear system. While gear reduction can increase the torque output, it also introduces additional losses due to increased mechanical complexity. Therefore, the overall system efficiency may be lower compared to a direct-drive motor for certain applications.

It’s important to note that the efficiency of gear motors is influenced by various factors beyond gear reduction, such as motor design, control systems, and operating conditions. The selection of high-quality gears, proper lubrication, and regular maintenance can help minimize losses and improve efficiency. Additionally, advancements in gear technology, such as the use of precision gears and improved lubricants, can contribute to higher overall efficiency in gear motors.

In summary, gear reduction is significant in gear motors as it provides increased torque, improved control, and better load matching. However, gear reduction can introduce mechanical losses and affect the overall efficiency of the system. Proper design, maintenance, and consideration of application requirements are essential to optimize the balance between torque, speed, and efficiency in gear motors.

gear motor

In which industries are gear motors commonly used, and what are their primary applications?

Gear motors find widespread use in various industries due to their versatility, reliability, and ability to provide controlled mechanical power. They are employed in a wide range of applications that require precise power transmission and speed control. Here’s a detailed explanation of the industries where gear motors are commonly used and their primary applications:

1. Robotics and Automation:

Gear motors play a crucial role in robotics and automation industries. They are used in robotic arms, conveyor systems, automated assembly lines, and other robotic applications. Gear motors provide the required torque, speed control, and directional control necessary for the precise movements and operations of robots. They enable accurate positioning, gripping, and manipulation tasks in industrial and commercial automation settings.

2. Automotive Industry:

The automotive industry extensively utilizes gear motors in various applications. They are used in power windows, windshield wipers, HVAC systems, seat adjustment mechanisms, and many other automotive components. Gear motors provide the necessary torque and speed control for these systems, enabling smooth and efficient operation. Additionally, gear motors are also utilized in electric and hybrid vehicles for powertrain applications.

3. Manufacturing and Machinery:

Gear motors find wide application in the manufacturing and machinery sector. They are used in conveyor belts, packaging equipment, material handling systems, industrial mixers, and other machinery. Gear motors provide reliable power transmission, precise speed control, and torque amplification, ensuring efficient and synchronized operation of various manufacturing processes and machinery.

4. HVAC and Building Systems:

In heating, ventilation, and air conditioning (HVAC) systems, gear motors are commonly used in damper actuators, control valves, and fan systems. They enable precise control of airflow, temperature, and pressure, contributing to energy efficiency and comfort in buildings. Gear motors also find applications in automatic doors, blinds, and gate systems, providing reliable and controlled movement.

5. Marine and Offshore Industry:

Gear motors are extensively used in the marine and offshore industry, particularly in propulsion systems, winches, and cranes. They provide the required torque and speed control for various marine operations, including steering, anchor handling, cargo handling, and positioning equipment. Gear motors in marine applications are designed to withstand harsh environments and provide reliable performance under demanding conditions.

6. Renewable Energy Systems:

The renewable energy sector, including wind turbines and solar tracking systems, relies on gear motors for efficient power generation. Gear motors are used to adjust the rotor angle and position in wind turbines, optimizing their performance in different wind conditions. In solar tracking systems, gear motors enable the precise movement and alignment of solar panels to maximize sunlight capture and energy production.

7. Medical and Healthcare:

Gear motors have applications in the medical and healthcare industry, including in medical equipment, laboratory devices, and patient care systems. They are used in devices such as infusion pumps, ventilators, surgical robots, and diagnostic equipment. Gear motors provide precise control and smooth operation, ensuring accurate dosing, controlled movements, and reliable functionality in critical medical applications.

These are just a few examples of the industries where gear motors are commonly used. Their versatility and ability to provide controlled mechanical power make them indispensable in numerous applications requiring torque amplification, speed control, directional control, and load distribution. The reliable and efficient power transmission offered by gear motors contributes to the smooth and precise operation of machinery and systems in various industries.

China supplier Hot Sale 100W 200W 400W Brushless DC Gear Motor   supplier China supplier Hot Sale 100W 200W 400W Brushless DC Gear Motor   supplier
editor by CX 2024-05-16

China manufacturer Low Noise 12rpm 329nm 48V 2000 Watt High Torque Planetary Gear DC Electric Motor with Brake vacuum pump oil near me

Product Description

Product Description

Feature: 

A. High power range from 75W to 15KW
B. Dia: 57mm-180mm
C. Easy for speed & direction adjustment
D. Rich stock and fast shipping time in 10 working days
E. Strong stability for driver/controller
F. Lifetime above continuous 10000 hours
G. IP65 protection rank is available for us
H. Above 90% enery efficiency motor is available
I. 3D file is available if customers needed
K.High-performance and stable matching driver and controller

Δ Kindly remind: As different customers may need different motor parameter for fitting your equipment. If below motor can’t fit your need, please kindly send inquiry to us with information for rated power or torque,rated speed, and rated voltage for our new size drawing making for you. CLICK HERE to contact me. Thanks a lot!

Dimensions (Unit: mm )
Mounting screws are included with gear head.

Gearbox Specification:

Gearbox Type

PLF90/PLE90

ZPLF90/ZPLE90

Deceleration stage

1

2

3

1

2

3

Length

153

176.5

199.5

187.5

222

245.5

Reduction ratio

Level 1: 3, 4, 5, 7, 10
Level 2: 16, 20, 25, 28, 35, 40, 70
Level 3: 64, 80, 100, 125, 140, 175, 200, 250

110mm 1000W BLDC motor with PLF90/PLE90 Planetary Gearbox 

Other Motor Specification Form: 
Δ Motor interface, Voltage, Speed can be customized.

For More Details Of Product Specifications,
Please Click here contact us for updated size drawing if you have other different parameter needed. Thanks

More Motor Flange Size

Δ More Motor Flange Size to choose, if you need other size. Welcome to contact us to custom.

BLDC Motor with Gearbox Range

Company Profile

DMKE motor was founded in China, HangZhou city,Xihu (West Lake) Dis. district, in 2009. After 12 years’ creativity and development, we became 1 of the leading high-tech companies in China in dc motor industry.

We specialize in high precision micro dc gear motors, brushless motors, brushless controllers, dc servo motors, dc servo controllers etc. And we produce brushless dc motor and controller with wide power range from 5 watt to 20 kilowatt; also dc servo motor power range from 50 watt to 10 kilowatt. They are widely used in automatic guided vehicle , robots, lifting equipment,cleaning machine, medical equipment, packing machinery, and many other industrial automatic equipments.

With a plant area of 4000 square meters, we have built our own supply chain with high quality control standard and passed ISO9001 certificate of quality system.

With more than 10 engineers for brushless dc motor and controllers’ research and development, we own strong independent design and development capability. Custom-made motors and controllers are widely accepted by us. At the same time, we have engineers who can speak fluent English. That makes we can supply intime after-sales support and guidance smoothly for our customers.

Our motors are exported worldwide, and over 80% motors are exported to Europe, the United States, Saudi Arabia, Australia, Korea etc. We are looking CHINAMFG to establishing long-term business relationship together with you for mutual business success.

FAQ

Q1: What kind motors you can provide?
A1: For now, we mainly provide permanent magnet brushless dc motor, dc gear motor, micro dc motor, planetary gear motor, dc servo motor, brush dc motors, with diameter range from 16 to 220mm,and power range from 5W to 20KW.

Q2: Is there a MOQ for your motors?
A2: No. we can accept 1 pcs for sample making for your testing,and the price for sample making will have 10% to 30% difference than bulk price based on different style.

Q3: Could you send me a price list?
A3: For all of our motors, they are customized based on different requirements like power, voltage, gear ratio, rated torque and shaft diameter etc. The price also varies according to different order qty. So it’s difficult for us to provide a price list.
If you can share your detailed specification and order qty, we’ll see what offer we can provide.

Q4: Are you motors reversible?
A4: Yes, nearly all dc and ac motor are reversible. We have technical people who can teach how to get the function by different wire connection.

Q5: Is it possible for you to develop new motors if we provide the tooling cost?
A5: Yes. Please kindly share the detailed requirements like performance, size, annual quantity, target price etc. Then we’ll make our evaluation to see if we can arrange or not.

Q6:How about your delivery time?
A6: For micro brush dc gear motor, the sample delivery time is 2-5 days, bulk delivery time is about 15-20 days, depends on the order qty.
For brushless dc motor, the sample deliver time is about 10-15 days; bulk time is 15-20 days.
Pleasecontact us for final reference.

Q7:What’s your warranty terms?
A6: One year

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools, Pump
Operating Speed: Adjust Speed
Excitation Mode: Compound
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 8
Samples:
US$ 330/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

What are the maintenance requirements for gear motors, and how can longevity be maximized?

Gear motors, like any mechanical system, require regular maintenance to ensure optimal performance and longevity. Proper maintenance practices help prevent failures, minimize downtime, and extend the lifespan of gear motors. Here are some maintenance requirements for gear motors and ways to maximize their longevity:

1. Lubrication:

Regular lubrication is essential for gear motors to reduce friction, wear, and heat generation. The gears, bearings, and other moving parts should be properly lubricated according to the manufacturer’s recommendations. Lubricants should be selected based on the motor’s specifications and operating conditions. Regular inspection and replenishment of lubricants, as well as periodic oil or grease changes, should be performed to maintain optimal lubrication levels and ensure long-lasting performance.

2. Inspection and Cleaning:

Regular inspection and cleaning of gear motors are crucial for identifying any signs of wear, damage, or contamination. Inspecting the gears, bearings, shafts, and connections can help detect any abnormalities or misalignments. Cleaning the motor’s exterior and ventilation channels to remove dust, debris, or moisture buildup is also important in preventing malfunctions and maintaining proper cooling. Any loose or damaged components should be repaired or replaced promptly.

3. Temperature and Environmental Considerations:

Monitoring and controlling the temperature and environmental conditions surrounding gear motors can significantly impact their longevity. Excessive heat can degrade lubricants, damage insulation, and lead to premature component failure. Ensuring proper ventilation, heat dissipation, and avoiding overloading the motor can help manage temperature effectively. Similarly, protecting gear motors from moisture, dust, chemicals, and other environmental contaminants is vital to prevent corrosion and damage.

4. Load Monitoring and Optimization:

Monitoring and optimizing the load placed on gear motors can contribute to their longevity. Operating gear motors within their specified load and speed ranges helps prevent excessive stress, overheating, and premature wear. Avoiding sudden and frequent acceleration or deceleration, as well as preventing overloading or continuous operation near the motor’s maximum capacity, can extend its lifespan.

5. Alignment and Vibration Analysis:

Proper alignment of gear motor components, such as gears, couplings, and shafts, is crucial for smooth and efficient operation. Misalignment can lead to increased friction, noise, and premature wear. Regularly checking and adjusting alignment, as well as performing vibration analysis, can help identify any misalignment or excessive vibration that may indicate underlying issues. Addressing alignment and vibration problems promptly can prevent further damage and maximize the motor’s longevity.

6. Preventive Maintenance and Regular Inspections:

Implementing a preventive maintenance program is essential for gear motors. This includes establishing a schedule for routine inspections, lubrication, and cleaning, as well as conducting periodic performance tests and measurements. Following the manufacturer’s guidelines and recommendations for maintenance tasks, such as belt tension checks, bearing replacements, or gear inspections, can help identify and address potential issues before they escalate into major failures.

By adhering to these maintenance requirements and best practices, the longevity of gear motors can be maximized. Regular maintenance, proper lubrication, load optimization, temperature control, and timely repairs or replacements of worn components contribute to the reliable operation and extended lifespan of gear motors.

gear motor

How does the voltage and power rating of a gear motor impact its suitability for different tasks?

The voltage and power rating of a gear motor are important factors that influence its suitability for different tasks. These specifications determine the motor’s electrical characteristics and its ability to perform specific tasks effectively. Here’s a detailed explanation of how voltage and power rating impact the suitability of a gear motor for different tasks:

1. Voltage Rating:

The voltage rating of a gear motor refers to the electrical voltage it requires to operate optimally. Here’s how the voltage rating affects suitability:

  • Compatibility with Power Supply: The gear motor’s voltage rating must match the available power supply. Using a motor with a voltage rating that is too high or too low for the power supply can lead to improper operation or damage to the motor.
  • Electrical Safety: Adhering to the specified voltage rating ensures electrical safety. Using a motor with a higher voltage rating than recommended can pose safety hazards, while using a motor with a lower voltage rating may result in inadequate performance.
  • Application Flexibility: Different tasks or applications may have specific voltage requirements. For example, low-voltage gear motors are commonly used in battery-powered devices or applications with low-power requirements, while high-voltage gear motors are suitable for industrial applications or tasks that require higher power output.

2. Power Rating:

The power rating of a gear motor indicates its ability to deliver mechanical power. It is typically specified in units of watts (W) or horsepower (HP). The power rating impacts the suitability of a gear motor in the following ways:

  • Load Capacity: The power rating determines the maximum load that a gear motor can handle. Motors with higher power ratings are capable of driving heavier loads or handling tasks that require more torque.
  • Speed and Torque: The power rating affects the motor’s speed and torque characteristics. Motors with higher power ratings generally offer higher speeds and greater torque output, making them suitable for applications that require faster operation or the ability to overcome higher resistance or loads.
  • Efficiency and Energy Consumption: The power rating is related to the motor’s efficiency and energy consumption. Higher power-rated motors may be more efficient, resulting in lower energy losses and reduced operating costs over time.
  • Thermal Considerations: Motors with higher power ratings may generate more heat during operation. It is crucial to consider the motor’s power rating in relation to its thermal management capabilities to prevent overheating and ensure long-term reliability.

Considerations for Task Suitability:

When selecting a gear motor for a specific task, it is important to consider the following factors in relation to the voltage and power rating:

  • Required Torque and Load: Assess the torque and load requirements of the task to ensure that the gear motor’s power rating is sufficient to handle the expected load without being overloaded.
  • Speed and Precision: Consider the desired speed and precision of the task. Motors with higher power ratings generally offer better speed control and accuracy.
  • Power Supply Availability: Evaluate the availability and compatibility of the power supply with the gear motor’s voltage rating. Ensure that the power supply can provide the required voltage for the motor’s optimal operation.
  • Environmental Factors: Consider any specific environmental factors, such as temperature or humidity, that may impact the gear motor’s performance. Ensure that the motor’s voltage and power ratings are suitable for the intended operating conditions.

In summary, the voltage and power rating of a gear motor have significant implications for its suitability in different tasks. The voltage rating determines compatibility with the power supply and ensures electrical safety, while the power rating influences load capacity, speed, torque, efficiency, and thermal considerations. When choosing a gear motor, it is crucial to carefully evaluate the task requirements and consider the voltage and power rating in relation to factors such as torque, speed, power supply availability, and environmental conditions.

gear motor

What are the different types of gears used in gear motors, and how do they impact performance?

Various types of gears are used in gear motors, each with its unique characteristics and impact on performance. The choice of gear type depends on the specific requirements of the application, including torque, speed, efficiency, noise level, and space constraints. Here’s a detailed explanation of the different types of gears used in gear motors and their impact on performance:

1. Spur Gears:

Spur gears are the most common type of gears used in gear motors. They have straight teeth that are parallel to the gear’s axis and mesh with another spur gear to transmit power. Spur gears provide high efficiency, reliable operation, and cost-effectiveness. However, they can generate significant noise due to the meshing of teeth, and they may produce axial thrust forces. Spur gears are suitable for applications that require high torque transmission and moderate to high rotational speeds.

2. Helical Gears:

Helical gears have angled teeth that are cut at an angle to the gear’s axis. This helical tooth configuration enables gradual engagement and smoother tooth contact, resulting in reduced noise and vibration compared to spur gears. Helical gears provide higher load-carrying capacity and are suitable for applications that require high torque transmission and moderate to high rotational speeds. They are commonly used in gear motors where low noise operation is desired, such as in automotive applications and industrial machinery.

3. Bevel Gears:

Bevel gears have teeth that are cut on a conical surface. They are used to transmit power between intersecting shafts, usually at right angles. Bevel gears can have straight teeth (straight bevel gears) or curved teeth (spiral bevel gears). These gears provide efficient power transmission and precise motion control in applications where shafts need to change direction. Bevel gears are commonly used in gear motors for applications such as steering systems, machine tools, and printing presses.

4. Worm Gears:

Worm gears consist of a worm (a type of screw) and a mating gear called a worm wheel or worm gear. The worm has a helical thread that meshes with the worm wheel, resulting in a compact and high gear reduction ratio. Worm gears provide high torque transmission, low noise operation, and self-locking properties, which prevent reverse motion. They are commonly used in gear motors for applications that require high gear reduction and locking capabilities, such as in lifting mechanisms, conveyor systems, and machine tools.

5. Planetary Gears:

Planetary gears, also known as epicyclic gears, consist of a central sun gear, multiple planet gears, and an outer ring gear. The planet gears mesh with both the sun gear and the ring gear, creating a compact and efficient gear system. Planetary gears offer high torque transmission, high gear reduction ratios, and excellent load distribution. They are commonly used in gear motors for applications that require high torque and compact size, such as in robotics, automotive transmissions, and industrial machinery.

6. Rack and Pinion:

Rack and pinion gears consist of a linear rack (a straight toothed bar) and a pinion gear (a spur gear with a small diameter). The pinion gear meshes with the rack to convert rotary motion into linear motion or vice versa. Rack and pinion gears provide precise linear motion control and are commonly used in gear motors for applications such as linear actuators, CNC machines, and steering systems.

The choice of gear type in a gear motor depends on factors such as the desired torque, speed, efficiency, noise level, and space constraints. Each type of gear offers specific advantages and impacts the performance of the gear motor differently. By selecting the appropriate gear type, gear motors can be optimized for their intended applications, ensuring efficient and reliable power transmission.

China manufacturer Low Noise 12rpm 329nm 48V 2000 Watt High Torque Planetary Gear DC Electric Motor with Brake   vacuum pump oil near me		China manufacturer Low Noise 12rpm 329nm 48V 2000 Watt High Torque Planetary Gear DC Electric Motor with Brake   vacuum pump oil near me
editor by CX 2024-05-15

China manufacturer Micro DC Motor Electric Drive High Speed Electromagnetic Gear High Quality Phase Scooters Elevator Shaft Engine Drive Best Stepper Synchronous Motors with high quality

Product Description

Micro DC Motor Electric Drive High Speed Electromagnetic Gear High Quality Phase Scooters Elevator Shaft Engine Drive Best Stepper Synchronous Motors

micro dc motor

Micro motor features
The main difference between our DC micro motors and conventional DC motors is in the rotor. The rotor doesn’t have an iron primary but consists of a self-assisting skew-wound copper winding. This featherweight rotor comes with an extremely low minute of inertia, and it rotates without cogging. The effect is the excellent dynamics of our motors. For low power micro motors, commutation systems using precious metals will be the optimum solution because of their low contact level of resistance.

Our precious steel commutated motors range in size from just 6 mm to 22 mm in diameter.

Micro motor benefits
Ideal for battery operated devices
No cogging
Incredibly low current consumption – low starting voltage
Highly dynamic performance due to a low inertia, low inductance winding
Light and compact
Precise speed control
Simple to control due to the linear performance characteristics

Application of Micro DC Motor

Micro DC motors are a type of electric motor that is typically smaller than 100 watts. They are characterized by their small size, low weight, and high efficiency. Micro DC motors are used in a wide variety of applications, including:

  • Automotive: Micro DC motors are used in a variety of automotive applications, such as power windows, power seats, and sunroofs.
  • Consumer electronics: Micro DC motors are used in a variety of consumer electronics applications, such as electric shavers, toothbrushes, and fans.
  • Industrial: Micro DC motors are used in a variety of industrial applications, such as robotics, automation, and machine tools.
  • Medical: Micro DC motors are used in various medical applications, such as pacemakers, insulin pumps, and surgical instruments.

Micro DC motors are a versatile type of motor that can be used in various applications. They are a reliable and efficient way to convert electrical energy into mechanical energy.

Here are some of the benefits of using micro DC motors:

  • Small size: Micro DC motors are typically smaller than 100 watts, which makes them ideal for applications where space is limited.
  • Low weight: Micro DC motors are lightweight, which makes them easy to transport and install.
  • High efficiency: Micro DC motors are highly efficient, which means they can produce much power for their size.
  • Low noise: Micro DC motors are typically tranquil, which makes them ideal for applications where noise is a concern.
  • Long life: Micro DC motors can have a long service life, which means they can save you money in the long run.

If you are looking for a reliable and efficient way to convert electrical energy into mechanical energy, a micro DC motor is a good option. They are available in various sizes and power ratings, and they can be customized to meet the specific needs of your application.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Open Type
Number of Poles: 6
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|

brushless motor

Can micro gear motors be customized for specific applications, and how is this achieved?

Yes, micro gear motors can be customized to meet the specific requirements of different applications. Customization allows for the optimization of motor performance, size, and features to best suit the intended use. Here’s how customization of micro gear motors is achieved:

  1. Motor Sizing: The customization process begins with determining the appropriate motor size for the application. Factors such as required torque, speed, power consumption, and physical dimensions are considered to select a motor that can deliver the desired performance within the constraints of the application.
  2. Gear Ratio Selection: The gear ratio determines the relationship between the motor’s speed and the output shaft’s speed. By selecting different gear ratios, the torque and speed characteristics of the micro gear motor can be tailored to match the specific requirements of the application. Higher gear ratios provide more torque at the expense of speed, while lower gear ratios offer higher speed at the expense of torque.
  3. Mounting and Integration: Micro gear motors can be customized to facilitate easy integration into the target system or device. Mounting options, such as flanges or brackets, can be designed to ensure secure attachment. Additionally, custom shaft configurations, connectors, and wiring options can be implemented to simplify the motor’s integration into the overall system.
  4. Environmental Considerations: Customization may involve adapting the micro gear motor to operate in specific environmental conditions. For example, if the motor will be exposed to moisture, dust, or extreme temperatures, protective measures such as sealing, specialized coatings, or thermal management solutions can be incorporated into the motor’s design.
  5. Control and Feedback: In some applications, customization may involve integrating specific control and feedback mechanisms into the micro gear motor. This can include position sensors, encoders, or communication interfaces that enable precise control, feedback, and integration with other system components or devices.
  6. Specialized Materials and Components: Custom micro gear motors can utilize specialized materials and components to meet unique application requirements. This may involve using specific gear materials, bearings, or insulation materials that offer enhanced performance, durability, or resistance to certain environmental factors.
  7. Performance Optimization: Customization allows for fine-tuning the micro gear motor’s performance to achieve optimal efficiency, power output, or response characteristics for the specific application. This can involve adjusting motor parameters, control algorithms, or utilizing advanced motor technologies to meet specific performance goals.

Overall, customization of micro gear motors is achieved through a combination of careful motor selection, design modifications, incorporation of specialized features and materials, and optimization of performance parameters. Collaborating with motor manufacturers or engineering firms with expertise in micro gear motors can help tailor the motor to the exact requirements of the application.

brushless motor

Can you provide examples of innovative uses of micro gear motors in modern technology?

Micro gear motors have found innovative applications across various modern technologies. Here are some examples:

  • Drones: Micro gear motors are commonly used in drones to drive the propellers and control the flight. Their compact size, lightweight design, and precise control capabilities make them ideal for achieving stable and agile flight maneuvers.
  • Robotics: Micro gear motors play a crucial role in robotics, powering the joints and actuators of robotic arms, grippers, and humanoid robots. Their precise control, compact form factor, and high torque-to-size ratio enable robots to perform delicate and precise manipulations in industrial automation, medical procedures, and research applications.
  • Automotive Systems: Micro gear motors are used in various automotive systems, such as power windows, door locks, and seat adjustments. Their small size and high torque allow for efficient and reliable operation of these mechanisms within the limited space available in vehicles.
  • Medical Devices: Micro gear motors are utilized in medical devices and equipment, including surgical robots, prosthetics, insulin pumps, and lab automation systems. Their precise control, compact size, and low power consumption make them suitable for applications requiring fine movements, accurate dosing, and miniaturization.
  • Consumer Electronics: Micro gear motors are incorporated into numerous consumer electronic devices. They can be found in cameras for lens movement and autofocus, wearable devices for haptic feedback and vibration, and home appliances for precise control of valves, fans, and robotic components.
  • Smart Home Systems: Micro gear motors are employed in smart home systems to control various functions, such as motorized curtains, blinds, and awnings. Their precise control, quiet operation, and compatibility with automation systems allow for convenient and customizable control of these home features.

These examples represent just a few of the many innovative uses of micro gear motors in modern technology. Their versatility, precision, and compact design make them valuable components in a wide range of applications, contributing to advancements in automation, robotics, electronics, and beyond.

brushless motor

What types of gears are typically employed in micro gear motors for efficient power transmission?

Micro gear motors utilize various types of gears to achieve efficient power transmission. Here are some commonly employed gear types in micro gear motors:

1. Spur Gears:

Spur gears are the most basic and commonly used gears in micro gear motors. They have straight teeth and are mounted on parallel shafts. Spur gears provide efficient power transmission with low noise and high efficiency. They are suitable for applications that require high-speed rotation and moderate torque requirements.

2. Helical Gears:

Helical gears are similar to spur gears but have angled teeth. The angled teeth allow for smoother and quieter operation compared to spur gears. Helical gears provide higher torque transmission capabilities and are commonly used in micro gear motors where reducing noise and vibration is important, such as in precision instruments or small appliances.

3. Planetary Gears:

Planetary gears, also known as epicyclic gears, are compact gear systems that consist of a central gear (sun gear), multiple surrounding gears (planet gears), and an outer ring gear (ring gear). Planetary gears offer high torque transmission capabilities in a compact design. They are commonly used in micro gear motors where a high gear ratio and torque multiplication are required, such as in robotics or automation systems.

4. Worm Gears:

Worm gears consist of a worm (a screw-like gear) and a mating gear called a worm wheel. Worm gears provide a high gear reduction ratio and are suitable for applications that require high torque output and low-speed rotation. They are commonly used in micro gear motors for applications such as valve actuators, conveyor systems, or precision positioning devices.

5. Bevel Gears:

Bevel gears have teeth that are cut on conical surfaces and are used to transmit power between intersecting shafts. They are commonly employed in micro gear motors that require changes in direction or angle of power transmission. Bevel gears provide efficient power transfer and can accommodate a wide range of speed and torque requirements.

6. Hypoid Gears:

Hypoid gears are similar to bevel gears but have offset axes. They are used in micro gear motors that require high torque transmission at right angles. Hypoid gears offer efficient power transmission with reduced noise and vibration, making them suitable for applications that require compact and quiet operation.

7. Rack and Pinion:

Rack and pinion gears consist of a linear gear (rack) meshing with a rotational gear (pinion). They are commonly used in micro gear motors for linear motion applications, such as in CNC machines, 3D printers, or small-scale automation systems. Rack and pinion gears provide efficient and precise linear motion control.

These are some of the common types of gears employed in micro gear motors for efficient power transmission. The choice of gear type depends on the specific requirements of the application, including torque, speed, noise level, and space constraints.

China manufacturer Micro DC Motor Electric Drive High Speed Electromagnetic Gear High Quality Phase Scooters Elevator Shaft Engine Drive Best Stepper Synchronous Motors   with high quality China manufacturer Micro DC Motor Electric Drive High Speed Electromagnetic Gear High Quality Phase Scooters Elevator Shaft Engine Drive Best Stepper Synchronous Motors   with high quality
editor by CX 2024-05-15

China Best Sales Factory Price Good Quality 12V DC 25mm Low Rpm Gear Motor with Best Sales

Product Description

 

Product Category

Factory Price good quality  12V DC 25mm low rpm gear motor

We always provide customers with distinctive products:cost-effective, lower
noise, higher efficiency and stability, longer life and higher strength.

Basic information
Product name PG25370 series,25mm diameter planet gear motor
Motor type carbon-brush commutator
Gear type Straight gearwheel,planet construction
Housing material Steel
Geartrain material Steel and Powdered Metal,POM optional
Bearing at output shaft Sleeve bearing
Lubricant Grease for high-low temperature, -62—
Mob: 13738823255
Contact: Candy Xu
 

Add: NO.1269 Mingshu Road HangZhou Industrial Zone,Xihu (West Lake) Dis. District,HangZhou ZHangZhoug Province China.

Post: 315191
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Constant Speed
Function: Driving
Casing Protection: Closed Type
Structure and Working Principle: Brush
Certification: ISO/Ts16949/Ce/Rhos
Customization:
Available

|

gear motor

Are there innovations or emerging technologies in the field of gear motor design?

Yes, there are several innovations and emerging technologies in the field of gear motor design. These advancements aim to improve the performance, efficiency, compactness, and reliability of gear motors. Here are some notable innovations and emerging technologies in gear motor design:

1. Miniaturization and Compact Design:

Advancements in manufacturing techniques and materials have enabled the miniaturization of gear motors without compromising their performance. Gear motors with compact designs are highly sought after in applications where space is limited, such as robotics, medical devices, and consumer electronics. Innovative approaches like micro-gear motors and integrated motor-gear units are being developed to achieve smaller form factors while maintaining high torque and efficiency.

2. High-Efficiency Gearing:

New gear designs focus on improving efficiency by reducing friction and mechanical losses. Advanced gear manufacturing techniques, such as precision machining and 3D printing, allow for the creation of intricate gear tooth profiles that optimize power transmission and minimize losses. Additionally, the use of high-performance materials, coatings, and lubricants helps reduce friction and wear, improving overall gear motor efficiency.

3. Magnetic Gearing:

Magnetic gearing is an emerging technology that replaces traditional mechanical gears with magnetic fields to transmit torque. It utilizes the interaction of permanent magnets to transfer power, eliminating the need for physical gear meshing. Magnetic gearing offers advantages such as high efficiency, low noise, compactness, and maintenance-free operation. While still being developed and refined, magnetic gearing holds promise for various applications, including gear motors.

4. Integrated Electronics and Controls:

Gear motor designs are incorporating integrated electronics and controls to enhance performance and functionality. Integrated motor drives and controllers simplify system integration, reduce wiring complexity, and allow for advanced control features. These integrated solutions offer precise speed and torque control, intelligent feedback mechanisms, and connectivity options for seamless integration into automation systems and IoT (Internet of Things) platforms.

5. Smart and Condition Monitoring Capabilities:

New gear motor designs incorporate smart features and condition monitoring capabilities to enable predictive maintenance and optimize performance. Integrated sensors and monitoring systems can detect abnormal operating conditions, track performance parameters, and provide real-time feedback for proactive maintenance and troubleshooting. This helps prevent unexpected failures, extend the lifespan of gear motors, and improve overall system reliability.

6. Energy-Efficient Motor Technologies:

Gear motor design is influenced by advancements in energy-efficient motor technologies. Brushless DC (BLDC) motors and synchronous reluctance motors (SynRM) are gaining popularity due to their higher efficiency, better power density, and improved controllability compared to traditional brushed DC and induction motors. These motor technologies, when combined with optimized gear designs, contribute to overall system energy savings and performance improvements.

These are just a few examples of the innovations and emerging technologies in gear motor design. The field is continuously evolving, driven by the need for more efficient, compact, and reliable motion control solutions in various industries. Gear motor manufacturers and researchers are actively exploring new materials, manufacturing techniques, control strategies, and system integration approaches to meet the evolving demands of modern applications.

gear motor

How does the voltage and power rating of a gear motor impact its suitability for different tasks?

The voltage and power rating of a gear motor are important factors that influence its suitability for different tasks. These specifications determine the motor’s electrical characteristics and its ability to perform specific tasks effectively. Here’s a detailed explanation of how voltage and power rating impact the suitability of a gear motor for different tasks:

1. Voltage Rating:

The voltage rating of a gear motor refers to the electrical voltage it requires to operate optimally. Here’s how the voltage rating affects suitability:

  • Compatibility with Power Supply: The gear motor’s voltage rating must match the available power supply. Using a motor with a voltage rating that is too high or too low for the power supply can lead to improper operation or damage to the motor.
  • Electrical Safety: Adhering to the specified voltage rating ensures electrical safety. Using a motor with a higher voltage rating than recommended can pose safety hazards, while using a motor with a lower voltage rating may result in inadequate performance.
  • Application Flexibility: Different tasks or applications may have specific voltage requirements. For example, low-voltage gear motors are commonly used in battery-powered devices or applications with low-power requirements, while high-voltage gear motors are suitable for industrial applications or tasks that require higher power output.

2. Power Rating:

The power rating of a gear motor indicates its ability to deliver mechanical power. It is typically specified in units of watts (W) or horsepower (HP). The power rating impacts the suitability of a gear motor in the following ways:

  • Load Capacity: The power rating determines the maximum load that a gear motor can handle. Motors with higher power ratings are capable of driving heavier loads or handling tasks that require more torque.
  • Speed and Torque: The power rating affects the motor’s speed and torque characteristics. Motors with higher power ratings generally offer higher speeds and greater torque output, making them suitable for applications that require faster operation or the ability to overcome higher resistance or loads.
  • Efficiency and Energy Consumption: The power rating is related to the motor’s efficiency and energy consumption. Higher power-rated motors may be more efficient, resulting in lower energy losses and reduced operating costs over time.
  • Thermal Considerations: Motors with higher power ratings may generate more heat during operation. It is crucial to consider the motor’s power rating in relation to its thermal management capabilities to prevent overheating and ensure long-term reliability.

Considerations for Task Suitability:

When selecting a gear motor for a specific task, it is important to consider the following factors in relation to the voltage and power rating:

  • Required Torque and Load: Assess the torque and load requirements of the task to ensure that the gear motor’s power rating is sufficient to handle the expected load without being overloaded.
  • Speed and Precision: Consider the desired speed and precision of the task. Motors with higher power ratings generally offer better speed control and accuracy.
  • Power Supply Availability: Evaluate the availability and compatibility of the power supply with the gear motor’s voltage rating. Ensure that the power supply can provide the required voltage for the motor’s optimal operation.
  • Environmental Factors: Consider any specific environmental factors, such as temperature or humidity, that may impact the gear motor’s performance. Ensure that the motor’s voltage and power ratings are suitable for the intended operating conditions.

In summary, the voltage and power rating of a gear motor have significant implications for its suitability in different tasks. The voltage rating determines compatibility with the power supply and ensures electrical safety, while the power rating influences load capacity, speed, torque, efficiency, and thermal considerations. When choosing a gear motor, it is crucial to carefully evaluate the task requirements and consider the voltage and power rating in relation to factors such as torque, speed, power supply availability, and environmental conditions.

gear motor

What is a gear motor, and how does it combine the functions of gears and a motor?

A gear motor is a type of motor that incorporates gears into its design to combine the functions of gears and a motor. It consists of a motor, which provides the mechanical power, and a set of gears, which transmit and modify this power to achieve specific output characteristics. Here’s a detailed explanation of what a gear motor is and how it combines the functions of gears and a motor:

A gear motor typically consists of two main components: the motor and the gear system. The motor is responsible for converting electrical energy into mechanical energy, generating rotational motion. The gear system, on the other hand, consists of multiple gears with different sizes and tooth configurations. These gears are meshed together in a specific arrangement to transmit and modify the output torque and speed of the motor.

The gears in a gear motor serve several functions:

1. Torque Amplification:

One of the primary functions of the gear system in a gear motor is to amplify the torque output of the motor. By using gears with different sizes, the input torque can be effectively multiplied or reduced. This allows the gear motor to provide higher torque at lower speeds or lower torque at higher speeds, depending on the gear arrangement. This torque amplification is beneficial in applications where high torque is required, such as in heavy machinery or vehicles.

2. Speed Reduction or Increase:

The gear system in a gear motor can also be used to reduce or increase the rotational speed of the motor output. By utilizing gears with different numbers of teeth, the gear ratio can be adjusted to achieve the desired speed output. For example, a gear motor with a higher gear ratio will output lower speed but higher torque, whereas a gear motor with a lower gear ratio will output higher speed but lower torque. This speed control capability allows for precise matching of motor output to the requirements of specific applications.

3. Directional Control:

Gears in a gear motor can be used to control the direction of rotation of the motor output shaft. By employing different combinations of gears, such as spur gears, bevel gears, or worm gears, the rotational direction can be changed. This directional control is crucial in applications where bidirectional movement is required, such as in conveyor systems or robotic arms.

4. Load Distribution:

The gear system in a gear motor helps distribute the load evenly across multiple gears, which reduces the stress on individual gears and increases the overall durability and lifespan of the motor. By sharing the load among multiple gears, the gear motor can handle higher torque applications without putting excessive strain on any particular gear. This load distribution capability is especially important in heavy-duty applications that require continuous operation under demanding conditions.

By combining the functions of gears and a motor, gear motors offer several advantages. They provide torque amplification, speed control, directional control, and load distribution capabilities, making them suitable for various applications that require precise and controlled mechanical power. Gear motors are commonly used in industries such as robotics, automotive, manufacturing, and automation, where reliable and efficient power transmission is essential.

China Best Sales Factory Price Good Quality 12V DC 25mm Low Rpm Gear Motor   with Best Sales China Best Sales Factory Price Good Quality 12V DC 25mm Low Rpm Gear Motor   with Best Sales
editor by CX 2024-05-14

China Best Sales Micro DC Motor Electric Drive High Speed Electromagnetic Gear High Quality Phase Scooters Elevator Shaft Engine Drive Best Stepper Synchronous Motors vacuum pump diy

Product Description

Micro DC Motor Electric Drive High Speed Electromagnetic Gear High Quality Phase Scooters Elevator Shaft Engine Drive Best Stepper Synchronous Motors

micro dc motor

Micro motor features
The main difference between our DC micro motors and conventional DC motors is in the rotor. The rotor doesn’t have an iron primary but consists of a self-assisting skew-wound copper winding. This featherweight rotor comes with an extremely low minute of inertia, and it rotates without cogging. The effect is the excellent dynamics of our motors. For low power micro motors, commutation systems using precious metals will be the optimum solution because of their low contact level of resistance.

Our precious steel commutated motors range in size from just 6 mm to 22 mm in diameter.

Micro motor benefits
Ideal for battery operated devices
No cogging
Incredibly low current consumption – low starting voltage
Highly dynamic performance due to a low inertia, low inductance winding
Light and compact
Precise speed control
Simple to control due to the linear performance characteristics

Application of Micro DC Motor

Micro DC motors are a type of electric motor that is typically smaller than 100 watts. They are characterized by their small size, low weight, and high efficiency. Micro DC motors are used in a wide variety of applications, including:

  • Automotive: Micro DC motors are used in a variety of automotive applications, such as power windows, power seats, and sunroofs.
  • Consumer electronics: Micro DC motors are used in a variety of consumer electronics applications, such as electric shavers, toothbrushes, and fans.
  • Industrial: Micro DC motors are used in a variety of industrial applications, such as robotics, automation, and machine tools.
  • Medical: Micro DC motors are used in various medical applications, such as pacemakers, insulin pumps, and surgical instruments.

Micro DC motors are a versatile type of motor that can be used in various applications. They are a reliable and efficient way to convert electrical energy into mechanical energy.

Here are some of the benefits of using micro DC motors:

  • Small size: Micro DC motors are typically smaller than 100 watts, which makes them ideal for applications where space is limited.
  • Low weight: Micro DC motors are lightweight, which makes them easy to transport and install.
  • High efficiency: Micro DC motors are highly efficient, which means they can produce much power for their size.
  • Low noise: Micro DC motors are typically tranquil, which makes them ideal for applications where noise is a concern.
  • Long life: Micro DC motors can have a long service life, which means they can save you money in the long run.

If you are looking for a reliable and efficient way to convert electrical energy into mechanical energy, a micro DC motor is a good option. They are available in various sizes and power ratings, and they can be customized to meet the specific needs of your application.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Open Type
Number of Poles: 6
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|

brushless motor

Where can individuals find reputable suppliers or manufacturers of micro gear motors?

Individuals looking for reputable suppliers or manufacturers of micro gear motors can consider the following reliable sources:

  • Online Directories: Online directories, such as Thomasnet, Alibaba, or GlobalSpec, provide comprehensive listings of suppliers and manufacturers across various industries. These directories often include detailed profiles, product catalogs, and customer reviews, making it easier to evaluate and connect with reputable micro gear motor suppliers.
  • Trade Shows and Exhibitions: Attending industry-specific trade shows and exhibitions offers an excellent opportunity to meet and connect with reputable micro gear motor manufacturers and suppliers. These events gather industry professionals, showcase the latest technologies, and provide a platform for networking and establishing business relationships.
  • Industry Associations: Industry associations, such as the Robotics Industries Association (RIA) or the National Electrical Manufacturers Association (NEMA), can provide valuable resources and directories of reputable micro gear motor manufacturers and suppliers. These associations often have strict membership criteria, ensuring that listed companies adhere to industry standards and best practices.
  • Referrals and Recommendations: Seek referrals or recommendations from colleagues, industry experts, or professionals who have experience working with micro gear motors. Their firsthand experiences can provide insights into reputable manufacturers or suppliers known for their quality products, reliable services, and customer support.
  • Online Research and Reviews: Conducting online research allows individuals to explore various manufacturers or suppliers of micro gear motors. Look for websites, online forums, or discussion boards that provide reviews, ratings, or testimonials from customers. Reading unbiased experiences and feedback can help identify reputable companies that consistently deliver high-quality products and excellent customer service.
  • Consulting with Industry Experts: Seek advice from industry experts, engineers, or consultants who specialize in micro gear motors. They often have extensive knowledge of the market, industry trends, and reputable manufacturers or suppliers. Consulting with experts can provide valuable insights and guidance in selecting the right supplier for specific requirements.

It is important to conduct due diligence when evaluating suppliers or manufacturers. Consider factors such as their reputation, years of experience in the industry, product quality, certifications, customer support, and delivery capabilities. Request samples, specifications, or references to assess their suitability for the intended application.

By utilizing these sources and conducting thorough research, individuals can find reputable suppliers or manufacturers of micro gear motors that meet their specific needs and ensure reliable and high-quality products.

brushless motor

What challenges or limitations might be associated with the use of micro gear motors?

Micro gear motors, despite their many advantages, also come with certain challenges and limitations. Here are some of them:

  • Size and Space Constraints: Micro gear motors are designed to be compact and small in size, which can be advantageous in many applications. However, the small size can also limit the power output and torque capabilities of the motor, making them unsuitable for applications that require high power or high torque.
  • Heat Dissipation: Micro gear motors can generate heat during operation, especially when subjected to high loads or continuous use. The compact size and limited surface area of the motor can make heat dissipation challenging, potentially leading to overheating and reduced performance or lifespan. Proper heat dissipation strategies such as cooling fans or heat sinks may be required in certain applications.
  • Noise and Vibration: Due to the mechanical nature of gear systems, micro gear motors can produce noise and vibration during operation. The noise and vibration levels can vary depending on the quality of the gears and the design of the motor. In applications where noise or vibration is a concern, additional measures such as noise-reducing enclosures or vibration dampening techniques may be necessary.
  • Limited Lifespan: Micro gear motors, like any mechanical system, have a limited lifespan. The continuous operation, high loads, and friction within the gear system can contribute to wear and tear over time. Regular maintenance, lubrication, and periodic replacement of worn-out components may be required to ensure optimal performance and longevity.
  • Cost: Micro gear motors, especially those with advanced features or high precision, can be relatively expensive compared to other motor types. The cost of manufacturing, materials, and specialized components can contribute to the overall cost. Additionally, the need for additional accessories such as controllers or drivers may further increase the cost of implementing micro gear motors in certain applications.

Despite these challenges and limitations, micro gear motors offer unique advantages and are suitable for a wide range of applications. Understanding the specific requirements and limitations of the motor can help in selecting the appropriate type and optimizing its performance in a given application.

brushless motor

What types of gears are typically employed in micro gear motors for efficient power transmission?

Micro gear motors utilize various types of gears to achieve efficient power transmission. Here are some commonly employed gear types in micro gear motors:

1. Spur Gears:

Spur gears are the most basic and commonly used gears in micro gear motors. They have straight teeth and are mounted on parallel shafts. Spur gears provide efficient power transmission with low noise and high efficiency. They are suitable for applications that require high-speed rotation and moderate torque requirements.

2. Helical Gears:

Helical gears are similar to spur gears but have angled teeth. The angled teeth allow for smoother and quieter operation compared to spur gears. Helical gears provide higher torque transmission capabilities and are commonly used in micro gear motors where reducing noise and vibration is important, such as in precision instruments or small appliances.

3. Planetary Gears:

Planetary gears, also known as epicyclic gears, are compact gear systems that consist of a central gear (sun gear), multiple surrounding gears (planet gears), and an outer ring gear (ring gear). Planetary gears offer high torque transmission capabilities in a compact design. They are commonly used in micro gear motors where a high gear ratio and torque multiplication are required, such as in robotics or automation systems.

4. Worm Gears:

Worm gears consist of a worm (a screw-like gear) and a mating gear called a worm wheel. Worm gears provide a high gear reduction ratio and are suitable for applications that require high torque output and low-speed rotation. They are commonly used in micro gear motors for applications such as valve actuators, conveyor systems, or precision positioning devices.

5. Bevel Gears:

Bevel gears have teeth that are cut on conical surfaces and are used to transmit power between intersecting shafts. They are commonly employed in micro gear motors that require changes in direction or angle of power transmission. Bevel gears provide efficient power transfer and can accommodate a wide range of speed and torque requirements.

6. Hypoid Gears:

Hypoid gears are similar to bevel gears but have offset axes. They are used in micro gear motors that require high torque transmission at right angles. Hypoid gears offer efficient power transmission with reduced noise and vibration, making them suitable for applications that require compact and quiet operation.

7. Rack and Pinion:

Rack and pinion gears consist of a linear gear (rack) meshing with a rotational gear (pinion). They are commonly used in micro gear motors for linear motion applications, such as in CNC machines, 3D printers, or small-scale automation systems. Rack and pinion gears provide efficient and precise linear motion control.

These are some of the common types of gears employed in micro gear motors for efficient power transmission. The choice of gear type depends on the specific requirements of the application, including torque, speed, noise level, and space constraints.

China Best Sales Micro DC Motor Electric Drive High Speed Electromagnetic Gear High Quality Phase Scooters Elevator Shaft Engine Drive Best Stepper Synchronous Motors   vacuum pump diyChina Best Sales Micro DC Motor Electric Drive High Speed Electromagnetic Gear High Quality Phase Scooters Elevator Shaft Engine Drive Best Stepper Synchronous Motors   vacuum pump diy
editor by CX 2024-05-14

China manufacturer 24V DC Gear Motor Micro Gearbox Motor for Door Lock vacuum pump brakes

Product Description

 

Product Parameters

Model No.: KM-28A365-24.2-24426

Size details:
Motor Diameter: φ28mm
Gear box length :32.6mm
Shaft length: customization

Specifications:
 

Ratio Model No. Voltage No Load At Maximum Efficiency
Operating Range Nominal Speed Current Speed Current Torque
V V r/min A r/min A Kg·cm
1/24.2 KM-28A365-24.2-24426 6.0-24.0 24 426 0.05 323 0.424 1

All technical data can custom made for different application.

Customized items:
DC motor, gearbox motor, vibration motor, automotive motor.
Accessories offered like encoder, gear,worm, wire, connector.
Ball bearing or Oil-impregnated bearing.
Shaft configuration(multi-knurls,D-cut shape, four-knurls etc).
Metal end cap or plastic end cap.
 Precious metal brush/ carbon brush.
Technical data.

Detailed Photos

Application

 

Certifications

Packaging & Shipping

Company Profile

Our Advantages

FAQ

1.What kind of motor do you supply?

Kinmore specializes in making DC motors & gear motors with the diameter ranging from 6mm-80mm; automotive motors and vibration motors are our strength area, too; we also provide brushless motors.
 

2.What’s the lead time for samples or mass production?

Normally, it takes 15-25 days to produce samples; about mass production, it will take 35-40 days for DC motor production and 45-60 days for gear motor production.
 

3.Could you mind sending the quotation for this motor?

For all of our motors, they are customized based on different requirements. We will offer the quotation soon after you send your specific requests and annual quantity.
 

4.Do you offer some kinds of accessories like encoder, PCB, connector, soldering wired for the motor?

We specialize in motors, instead of accessories. But if your annual demand reaches a certain amount, we will apply to the engineer for offering the accessories.

5.Are your motors certificated with UL, CB Tüv, CE?

All of our motors are UL, CB Tüv, CE compliant, and all our items are making under REACH and ROHS. We could provide motor’s exploring drawing and BOM for your products UL certificated. We also could make motors built-in filters based on your EMC directive for your EMC passing.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Low Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Open Type
Number of Poles: 4
Customization:
Available

|

brushless motor

What role do materials play in the design and manufacturing of reliable micro gear motors?

Materials play a critical role in the design and manufacturing of reliable micro gear motors. Here’s how they contribute:

  • Gear Material: The choice of material for the gears is crucial for the overall performance and reliability of micro gear motors. Gears are subjected to high loads, friction, and wear during operation. Common materials used for gears include steel, stainless steel, brass, and various engineering plastics. The selected material should have high strength, good wear resistance, and low friction characteristics to ensure smooth and efficient power transmission, minimize gear failure, and prolong the motor’s lifespan.
  • Motor Housing: The material used for the motor housing affects its durability, thermal management, and protection against environmental factors. Common materials for motor housings include aluminum, stainless steel, and engineering plastics. The housing should provide structural integrity, efficient heat dissipation, and protection against dust, moisture, and other contaminants to maintain the motor’s reliability and performance in various operating conditions.
  • Bearing Materials: Bearings are essential components in micro gear motors as they reduce friction and enable smooth rotation of the motor shaft. The choice of bearing material is crucial for ensuring reliable and long-lasting operation. Common bearing materials include stainless steel, ceramics, and various self-lubricating materials. The selected material should have low friction, high load-bearing capacity, and resistance to wear and corrosion to minimize power losses, maintain efficiency, and extend the motor’s lifespan.
  • Magnetic Materials: In motors that utilize permanent magnets, such as brushless DC (BLDC) motors, the choice of magnetic material is crucial for generating and maintaining magnetic fields. Neodymium magnets are commonly used due to their high magnetic strength and energy efficiency. The quality and characteristics of the magnetic material directly impact the motor’s performance, torque output, and overall efficiency.
  • Electrical Insulation: Micro gear motors often involve the flow of electrical current through the motor windings. Insulation materials, such as enamel or varnish, are used to electrically isolate the windings and prevent short circuits. The selected insulation material should have high dielectric strength, good thermal stability, and resistance to environmental factors to ensure reliable electrical insulation and prevent motor failures.

By carefully selecting appropriate materials for gears, motor housing, bearings, magnetic components, and electrical insulation, designers and manufacturers can optimize the reliability, efficiency, and performance of micro gear motors. The materials should be chosen based on the specific requirements of the application, considering factors such as load capacity, operating conditions, environmental factors, and cost-effectiveness.

brushless motor

Are there different types of micro gear motors, and how do they suit various applications?

Yes, there are different types of micro gear motors available, and each type is designed to suit specific applications based on their unique characteristics and performance capabilities. Here’s a detailed explanation of different types of micro gear motors and how they are suited for various applications:

1. DC Gear Motors:

DC (Direct Current) gear motors are widely used in various applications due to their simplicity, compact size, and versatility. They consist of a DC motor combined with a gearbox to provide torque multiplication and speed reduction. DC gear motors are available in different configurations, such as spur gear, planetary gear, and worm gear designs. Spur gear motors offer high torque output and are suitable for applications requiring moderate precision and efficiency. Planetary gear motors provide higher torque density, smooth operation, and increased efficiency, making them suitable for applications that require higher precision and compact design. Worm gear motors offer high torque output and are commonly used in applications that require low-speed operation and high gear ratios.

2. AC Gear Motors:

AC (Alternating Current) gear motors are primarily used in applications where a continuous power supply is available. They are typically used in machinery, appliances, and industrial equipment. AC gear motors are available in both synchronous and asynchronous (induction) designs. Synchronous AC gear motors operate at a fixed speed that is synchronized with the frequency of the AC power supply. They are suitable for applications that require constant speed and precise control, such as conveyor systems and robotics. Asynchronous AC gear motors operate at a slightly lower speed than synchronous motors and are commonly used in applications that require variable speed control, such as fans, pumps, and mixers.

3. Brushed and Brushless Gear Motors:

Micro gear motors can be classified into brushed and brushless types based on the type of motor technology used. Brushed gear motors have a commutator and brushes that make physical contact with the armature windings. They are cost-effective, simple in design, and provide good torque characteristics. Brushed gear motors are suitable for applications that require moderate precision, such as automotive systems, consumer electronics, and small appliances. On the other hand, brushless gear motors use electronic commutation instead of brushes and commutators. They offer higher efficiency, longer lifespan, and better speed control compared to brushed motors. Brushless gear motors are commonly used in applications that demand high precision, reliability, and efficiency, such as robotics, medical devices, and aerospace systems.

4. Stepper Gear Motors:

Stepper gear motors are designed to move in discrete steps or increments, making them suitable for applications that require precise positioning and control. They are widely used in applications such as 3D printers, CNC machines, robotics, and automation equipment. Stepper gear motors offer high torque at low speeds and can maintain position without the need for external feedback devices. They provide excellent control over acceleration, deceleration, and position accuracy, allowing for precise motion control in a wide range of applications.

5. Linear Gear Motors:

Linear gear motors, also known as linear actuators or linear motors, are designed to provide linear motion instead of rotational motion. They are used in applications that require precise linear positioning or actuation, such as medical devices, industrial automation, and robotics. Linear gear motors offer advantages such as high speed, high acceleration, precise control, and compact design. They can be either driven by DC or AC power sources, depending on the specific application requirements.

6. Precision Gear Motors:

Precision gear motors are designed to provide high accuracy, low backlash, and smooth operation. They are commonly used in applications that demand precise motion control and positioning, such as robotics, automation, and scientific instruments. Precision gear motors are typically constructed with high-quality materials, precision gears, and advanced control systems to ensure minimal error and high repeatability in motion control applications.

7. Micro Geared Stepper Motors:

Micro geared stepper motors combine the benefits of stepper motors and gear systems. They offer precise positional control, high torque at low speeds, and the ability to maintain position without power. Micro geared stepper motors are commonly used in applications such as robotics, camera systems, medical equipment, and consumer electronics where precise motion control and compact size are essential.

In summary, there are various types of micro gear motors available, each with its own advantages and suitability for specific applications. The choice of motor type depends on factors such as required torque, speed, precision, control, powerI apologize for the confusion.

brushless motor

Are there specific industries or fields where micro gear motors play a crucial role?

Micro gear motors play a crucial role in various industries and fields due to their compact size, precise motion control capabilities, and efficient power transmission. Here are some specific industries and fields where micro gear motors are commonly employed:

1. Consumer Electronics:

Micro gear motors are extensively used in consumer electronics, such as smartphones, tablets, digital cameras, and wearable devices. They enable precise movements in camera autofocus, lens zooming, vibration feedback, haptic feedback, and other functions requiring controlled motion. The compact size of micro gear motors allows for integration into small electronic devices without compromising on functionality or performance.

2. Medical Devices:

In the medical field, micro gear motors find applications in various devices and equipment. They are used in surgical robots, miniature pumps for drug delivery systems, insulin pumps, prosthetic limbs, robotic exoskeletons, and lab automation devices. Micro gear motors provide precise motion control and reliable operation, contributing to the accuracy and effectiveness of medical procedures and treatments.

3. Robotics and Automation:

Micro gear motors are crucial components in robotics and automation systems. They are used in miniature robots, robotic arms, automated guided vehicles (AGVs), and industrial machinery. Micro gear motors offer high torque output and precise motion control, enabling robots and automated systems to perform intricate tasks with accuracy and efficiency.

4. Automotive:

In the automotive industry, micro gear motors play a vital role in various applications. They are used in power windows, power seats, HVAC systems, side mirror adjustments, headlight leveling mechanisms, and automatic door locks. Micro gear motors provide reliable and precise movement control for these automotive components, enhancing comfort, convenience, and safety for vehicle occupants.

5. Aerospace and Defense:

Micro gear motors are utilized in the aerospace and defense sectors for critical applications. They are incorporated into aircraft systems, satellite mechanisms, unmanned aerial vehicles (UAVs), missile guidance systems, and military equipment. The compact size, lightweight nature, and precise motion control capabilities of micro gear motors are essential for meeting the stringent requirements of these industries.

6. Industrial Equipment:

In industrial settings, micro gear motors are employed in various equipment and machinery. They are used in conveyor systems, packaging machines, printing presses, CNC machines, textile machinery, and robotic assembly lines. Micro gear motors provide reliable and efficient power transmission, allowing for precise control and automation of industrial processes.

7. Precision Instruments:

Micro gear motors are integral to precision instruments where accurate motion control is crucial. They are used in scientific instruments, laboratory equipment, optical devices, surveying instruments, and measuring devices. The precise positioning capabilities of micro gear motors contribute to the accuracy and reliability of these instruments.

8. Smart Home and IoT:

In the realm of smart homes and the Internet of Things (IoT), micro gear motors play a significant role. They are utilized in smart locks, motorized blinds and curtains, robotic vacuum cleaners, smart appliances, and home automation systems. Micro gear motors enable the automation and remote control of various household tasks, enhancing convenience and energy efficiency.

These are just a few examples of industries and fields where micro gear motors play a crucial role. Their compact size, precise motion control, and efficient power transmission capabilities make them indispensable components in numerous applications across diverse sectors.

China manufacturer 24V DC Gear Motor Micro Gearbox Motor for Door Lock   vacuum pump brakesChina manufacturer 24V DC Gear Motor Micro Gearbox Motor for Door Lock   vacuum pump brakes
editor by CX 2024-05-14

China Good quality Od Size: 39mm-110mm 12V 24V DC Worm Gear Motor for Agricultural Equipment/Wiper Motor/Transmission Devices/Window Opener Motor Replcement of Dunker vacuum pump ac

Product Description

Product Description

MODEL VOLT POWER FREE SPEED FREE CURRENT
D49R 24V 30W 180±5RPM <0.65A
D76R 12V 70W 80±8RPM <0.65A
D63R 12V 70W 65±6RPM <0.65A

Motor Application

Production Line

Main Products

 

 

Packaging & Shipping

 

Company Profile

Certifications

 

FAQ

 

Our company FAQ for you
(1) Q: What kind motors you can provide?
A:For now,we mainly provide Kitchen Hood Motor,DC Motor,Gear Motor,Fan Motor Refrigerator Motor,Hair Dryer Motor Blender Motor Mixer Motor,
Shade Pole Motor,Capacitor Motor,BLDC Motor PMDC Motor,Synchronous Motor,Stepping Motor etc.

(2) Q: Is it possible to visit your factory
A: Sure. But please kindly keep us posted a few days in advance. We need to check our
schedule to see if we are available then.

(3) Q: Can I get some samples
A: It depends. If only a few samples for personal use or replacement, I am afraid it will
be difficult for us to provide, because all of our motors are custom made and no stock
available if there is no further needs. If just sample testing before the official order and
our MOQ, price and other terms are acceptable, we’d love to provide samples.

(4) Q: Is there a MOQ for your motors?
A: Yes. The MOQ is between 1000~10,000pcs for different models after sample approval.
But it’s also okay for us to accept smaller lots like a few dozens, hundreds or thousands
For the initial 3 orders after sample approval.For samples, there is no MOQ requirement. But the less the better (like no more than 5pcs) on condition that the quantity is enough in case any changes needed after initial testing.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Excited
Samples:
US$ 150/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

gear motor

What are the maintenance requirements for gear motors, and how can longevity be maximized?

Gear motors, like any mechanical system, require regular maintenance to ensure optimal performance and longevity. Proper maintenance practices help prevent failures, minimize downtime, and extend the lifespan of gear motors. Here are some maintenance requirements for gear motors and ways to maximize their longevity:

1. Lubrication:

Regular lubrication is essential for gear motors to reduce friction, wear, and heat generation. The gears, bearings, and other moving parts should be properly lubricated according to the manufacturer’s recommendations. Lubricants should be selected based on the motor’s specifications and operating conditions. Regular inspection and replenishment of lubricants, as well as periodic oil or grease changes, should be performed to maintain optimal lubrication levels and ensure long-lasting performance.

2. Inspection and Cleaning:

Regular inspection and cleaning of gear motors are crucial for identifying any signs of wear, damage, or contamination. Inspecting the gears, bearings, shafts, and connections can help detect any abnormalities or misalignments. Cleaning the motor’s exterior and ventilation channels to remove dust, debris, or moisture buildup is also important in preventing malfunctions and maintaining proper cooling. Any loose or damaged components should be repaired or replaced promptly.

3. Temperature and Environmental Considerations:

Monitoring and controlling the temperature and environmental conditions surrounding gear motors can significantly impact their longevity. Excessive heat can degrade lubricants, damage insulation, and lead to premature component failure. Ensuring proper ventilation, heat dissipation, and avoiding overloading the motor can help manage temperature effectively. Similarly, protecting gear motors from moisture, dust, chemicals, and other environmental contaminants is vital to prevent corrosion and damage.

4. Load Monitoring and Optimization:

Monitoring and optimizing the load placed on gear motors can contribute to their longevity. Operating gear motors within their specified load and speed ranges helps prevent excessive stress, overheating, and premature wear. Avoiding sudden and frequent acceleration or deceleration, as well as preventing overloading or continuous operation near the motor’s maximum capacity, can extend its lifespan.

5. Alignment and Vibration Analysis:

Proper alignment of gear motor components, such as gears, couplings, and shafts, is crucial for smooth and efficient operation. Misalignment can lead to increased friction, noise, and premature wear. Regularly checking and adjusting alignment, as well as performing vibration analysis, can help identify any misalignment or excessive vibration that may indicate underlying issues. Addressing alignment and vibration problems promptly can prevent further damage and maximize the motor’s longevity.

6. Preventive Maintenance and Regular Inspections:

Implementing a preventive maintenance program is essential for gear motors. This includes establishing a schedule for routine inspections, lubrication, and cleaning, as well as conducting periodic performance tests and measurements. Following the manufacturer’s guidelines and recommendations for maintenance tasks, such as belt tension checks, bearing replacements, or gear inspections, can help identify and address potential issues before they escalate into major failures.

By adhering to these maintenance requirements and best practices, the longevity of gear motors can be maximized. Regular maintenance, proper lubrication, load optimization, temperature control, and timely repairs or replacements of worn components contribute to the reliable operation and extended lifespan of gear motors.

gear motor

Are there environmental benefits to using gear motors in certain applications?

Yes, there are several environmental benefits associated with the use of gear motors in certain applications. Gear motors offer advantages that can contribute to increased energy efficiency, reduced resource consumption, and lower environmental impact. Here’s a detailed explanation of the environmental benefits of using gear motors:

1. Energy Efficiency:

Gear motors can improve energy efficiency in various ways:

  • Torque Conversion: Gear reduction allows gear motors to deliver higher torque output while operating at lower speeds. This enables the motor to perform tasks that require high torque, such as lifting heavy loads or driving machinery with high inertia, more efficiently. By matching the motor’s power characteristics to the load requirements, gear motors can operate closer to their peak efficiency, minimizing energy waste.
  • Controlled Speed: Gear reduction provides finer control over the motor’s rotational speed. This allows for more precise speed regulation, reducing the likelihood of energy overconsumption and optimizing energy usage.

2. Reduced Resource Consumption:

The use of gear motors can lead to reduced resource consumption and environmental impact:

  • Smaller Motor Size: Gear reduction allows gear motors to deliver higher torque with smaller, more compact motors. This reduction in motor size translates to reduced material and resource requirements during manufacturing. It also enables the use of smaller and lighter equipment, which can contribute to energy savings during operation and transportation.
  • Extended Motor Lifespan: The gear mechanism in gear motors helps reduce the load and stress on the motor itself. By distributing the load more evenly, gear motors can help extend the lifespan of the motor, reducing the need for frequent replacements and the associated resource consumption.

3. Noise Reduction:

Gear motors can contribute to a quieter and more environmentally friendly working environment:

  • Noise Dampening: Gear reduction can help reduce the noise generated by the motor. The gear mechanism acts as a noise dampener, absorbing and dispersing vibrations and reducing overall noise emission. This is particularly beneficial in applications where noise reduction is important, such as residential areas, offices, or noise-sensitive environments.

4. Precision and Control:

Gear motors offer enhanced precision and control, which can lead to environmental benefits:

  • Precise Positioning: Gear motors, especially stepper motors and servo motors, provide precise positioning capabilities. This accuracy allows for more efficient use of resources, minimizing waste and optimizing the performance of machinery or systems.
  • Optimized Control: Gear motors enable precise control over speed, torque, and movement. This control allows for better optimization of processes, reducing energy consumption and minimizing unnecessary wear and tear on equipment.

In summary, using gear motors in certain applications can have significant environmental benefits. Gear motors offer improved energy efficiency, reduced resource consumption, noise reduction, and enhanced precision and control. These advantages contribute to lower energy consumption, reduced environmental impact, and a more sustainable approach to power transmission and control. When selecting motor systems for specific applications, considering the environmental benefits of gear motors can help promote energy efficiency and sustainability.

gear motor

Can you explain the advantages of using gear motors in various mechanical systems?

Gear motors offer several advantages when utilized in various mechanical systems. Their unique characteristics make them well-suited for applications that require controlled power transmission, precise speed control, and torque amplification. Here’s a detailed explanation of the advantages of using gear motors:

1. Torque Amplification:

One of the key advantages of gear motors is their ability to amplify torque. By using different gear ratios, gear motors can increase or decrease the output torque from the motor. This torque amplification is crucial in applications that require high torque output, such as lifting heavy loads or operating machinery with high resistance. Gear motors allow for efficient power transmission, enabling the system to handle demanding tasks effectively.

2. Speed Control:

Gear motors provide precise speed control, allowing for accurate and controlled movement in mechanical systems. By selecting the appropriate gear ratio, the rotational speed of the output shaft can be adjusted to match the requirements of the application. This speed control capability ensures that the mechanical system operates at the desired speed, whether it needs to be fast or slow. Gear motors are commonly used in applications such as conveyors, robotics, and automated machinery, where precise speed control is essential.

3. Directional Control:

Another advantage of gear motors is their ability to control the rotational direction of the output shaft. By using different types of gears, such as spur gears, bevel gears, or worm gears, the direction of rotation can be easily changed. This directional control is beneficial in applications that require bidirectional movement, such as in actuators, robotic arms, and conveyors. Gear motors offer reliable and efficient directional control, contributing to the versatility and functionality of mechanical systems.

4. Efficiency and Power Transmission:

Gear motors are known for their high efficiency in power transmission. The gear system helps distribute the load across multiple gears, reducing the strain on individual components and minimizing power losses. This efficient power transmission ensures that the mechanical system operates with optimal energy utilization and minimizes wasted power. Gear motors are designed to provide reliable and consistent power transmission, resulting in improved overall system efficiency.

5. Compact and Space-Saving Design:

Gear motors are compact in size and offer a space-saving solution for mechanical systems. By integrating the motor and gear system into a single unit, gear motors eliminate the need for additional components and reduce the overall footprint of the system. This compact design is especially beneficial in applications with limited space constraints, allowing for more efficient use of available space while still delivering the necessary power and functionality.

6. Durability and Reliability:

Gear motors are designed to be robust and durable, capable of withstanding demanding operating conditions. The gear system helps distribute the load, reducing the stress on individual gears and increasing overall durability. Additionally, gear motors are often constructed with high-quality materials and undergo rigorous testing to ensure reliability and longevity. This makes gear motors well-suited for continuous operation in industrial and commercial applications, where reliability is crucial.

By leveraging the advantages of torque amplification, speed control, directional control, efficiency, compact design, durability, and reliability, gear motors provide a reliable and efficient solution for various mechanical systems. They are widely used in industries such as robotics, automation, manufacturing, automotive, and many others, where precise and controlled mechanical power transmission is essential.

China Good quality Od Size: 39mm-110mm 12V 24V DC Worm Gear Motor for Agricultural Equipment/Wiper Motor/Transmission Devices/Window Opener Motor Replcement of Dunker   vacuum pump acChina Good quality Od Size: 39mm-110mm 12V 24V DC Worm Gear Motor for Agricultural Equipment/Wiper Motor/Transmission Devices/Window Opener Motor Replcement of Dunker   vacuum pump ac
editor by CX 2024-05-14

China Best Sales Micro DC Gear Motor N20 Smart Lock Speed Regulating Gear Motor vacuum pump brakes

Product Description

Product Description

High Power version with 1.6A stall current:1.6A
With 12CPR without encoder ;  
With back shaft or not.
With metal brush or carbon brush
 

Model Voltage

Unit: VDC

No load speed

Unit: rpm

Noload current

Unit: mA

Stall torque

Unit: kg.cm

Gear ratio
N20H5 6V/12V 6000 rpm 120/60mA 0.1 kg.cm 5:1
N20H10 6V/12V 3000 rpm 120/60mA 0.2 kg.cm 10:1
N20H20 6V/12V 1500 rpm 120/60mA 0.4 kg.cm 20:1
N20H30 6V/12V 1000 rpm 120/60mA 0.6 kg.cm 30:1
N20H50 6V/12V 625 rpm 120/60mA 1.0 kg.cm 50:1
N20H75 6V/12V 400 rpm 120/60mA 1.5 kg.cm 75:1
N20H100 6V/12V 320 rpm 120/60mA 2.0 kg.cm 100:1
N20H150 6V/12V 200 rpm 120/60mA 3.0 kg.cm 150:1
N20H210 6V/12V 140 rpm 120/60mA 3.6 kg.cm 210:1
N20H250 6V/12V 120 rpm 120/60mA 4.2 kg.cm 250:1
N20H298 6V/12V 100 rpm 120/60mA 5.0 kg.cm 298:1
N20H380 6V/12V 78 rpm 120/60mA 6.3 kg.cm 380:1
N20H1000 6V/12V 32 rpm 120/60mA 9.0 kg.cm 1000:1

Detailed Photos

 

Product Parameters

 

Certifications

 

Product details assembly

Company Profile

FAQ

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: DC Gear Motor
Operating Speed: Low Speed
Excitation Mode: Excited
Function: Driving
Casing Protection: Open Type
Number of Poles: 2
Customization:
Available

|

brushless motor

What safety considerations should be taken into account when working with micro gear motors?

When working with micro gear motors, it is important to consider the following safety considerations:

  • Electrical Safety: Micro gear motors are powered by electricity, so it is crucial to follow electrical safety practices. Ensure that the motor is properly grounded, and use appropriate insulation and protective measures to prevent electrical shock hazards. Avoid working on the motor while it is energized.
  • Mechanical Hazards: Micro gear motors may have rotating components, such as shafts and gears, that can pose mechanical hazards. Take precautions to prevent accidental contact with moving parts. Use protective covers or enclosures to shield the motor, and avoid reaching into the motor assembly during operation.
  • Proper Installation: Follow the manufacturer’s instructions for the correct installation of the micro gear motor. Improper installation can lead to malfunctions, increased risks, and reduced performance. Ensure that the motor is securely mounted and aligned according to the recommended guidelines.
  • Overloading and Overheating: Avoid overloading the micro gear motor beyond its specified limits. Exceeding the motor’s maximum torque or operating it at excessively high temperatures can lead to performance degradation, premature wear, and potential safety hazards. Monitor the motor’s operating conditions and ensure adequate cooling to prevent overheating.
  • Environmental Considerations: Consider the environmental conditions in which the micro gear motor will be operated. If the motor is exposed to moisture, dust, or extreme temperatures, choose a motor with appropriate protection ratings or implement additional protective measures, such as sealing or thermal management solutions.
  • Control and Automation: When integrating micro gear motors into control systems or automation setups, ensure that the control circuits and interfaces are designed and implemented correctly. Improper wiring, incorrect signal levels, or faulty control circuits can lead to unpredictable motor behavior, safety risks, or damage to the motor and other components.
  • Maintenance and Inspection: Regularly inspect and maintain the micro gear motor according to the manufacturer’s recommendations. This includes cleaning, lubrication, and checking for signs of wear or damage. Perform maintenance tasks with the motor turned off and power sources disconnected to prevent accidental activation.
  • Personal Protective Equipment (PPE): Depending on the specific application and associated hazards, it may be necessary to wear appropriate personal protective equipment, such as safety glasses, gloves, or protective clothing, when working with micro gear motors. Assess the risks and adhere to safety guidelines to determine the necessary PPE.

Paying attention to these safety considerations when working with micro gear motors helps mitigate risks, ensures proper functionality, and promotes a safe working environment. It is important to familiarize oneself with the specific safety guidelines provided by the manufacturer and adhere to any local safety regulations or standards applicable to the industry or application.

brushless motor

What factors should be considered when selecting a micro gear motor for a particular application?

When selecting a micro gear motor for a particular application, several important factors should be taken into consideration. These factors help ensure that the chosen motor meets the specific requirements of the application and performs optimally. Here are the key factors to consider:

1. Torque Requirement:

Determine the torque requirements of the application. Consider both the maximum torque needed and the continuous torque required for sustained operation. Select a micro gear motor that can deliver the required torque output while considering factors such as load variations, start-up torque, and intermittent peak torque demands.

2. Speed Requirement:

Consider the desired speed range for the application. Determine the required output speed of the micro gear motor to ensure that it can meet the speed requirements of the specific task. It is important to select a motor with an appropriate gear ratio that can achieve the desired speed while considering the motor’s inherent speed limitations.

3. Power Supply:

Take into account the available power supply for the micro gear motor. Consider the voltage and current requirements of the motor and ensure compatibility with the available power source. Additionally, consider the power consumption and efficiency of the motor to optimize energy usage and minimize heat generation.

4. Physical Size and Mounting:

Consider the physical size and mounting requirements of the micro gear motor. Evaluate the available space for installation and ensure that the motor dimensions fit within the allotted space. Consider the mounting options, such as through-hole mounting, flange mounting, or custom mounting brackets, and choose a motor that can be easily integrated into the application.

5. Environmental Conditions:

Assess the environmental conditions in which the micro gear motor will operate. Consider factors such as temperature range, humidity, dust, vibration, and exposure to chemicals or corrosive substances. Select a motor that is designed to withstand and perform reliably under the specific environmental conditions of the application.

6. Expected Lifetime and Reliability:

Evaluate the expected lifetime and reliability requirements of the micro gear motor. Consider the duty cycle of the application, the expected operating hours, and the required maintenance intervals. Choose a motor with a reputation for reliability and durability to ensure long-term performance without frequent breakdowns or the need for premature replacements.

7. Control and Feedback:

Consider the control and feedback requirements of the micro gear motor. Determine if the application requires specific control interfaces, such as analog or digital signals, PWM control, or communication protocols like Modbus or CAN bus. Additionally, assess whether feedback mechanisms like encoders or sensors are necessary to provide accurate position or speed control.

8. Cost and Budget:

Evaluate the cost and budget constraints for the micro gear motor. Consider the overall cost of the motor, including the initial purchase price, installation costs, and any additional accessories or components required for proper operation. Balance the desired performance and features with the available budget to select a motor that provides the best value for the specific application.

9. Supplier and Support:

Consider the reputation and support provided by the micro gear motor supplier. Choose a reliable supplier with a track record of delivering quality products and excellent customer support. Ensure that the supplier offers technical assistance, documentation, and warranty coverage to address any potential issues or concerns that may arise during the motor’s lifespan.

By considering these factors, you can make an informed decision when selecting a micro gear motor for a particular application. It is essential to carefully evaluate the requirements and characteristics of the application to choose a motor that will meet performance expectations, ensure reliability, and provide optimal functionality.

brushless motor

What types of gears are typically employed in micro gear motors for efficient power transmission?

Micro gear motors utilize various types of gears to achieve efficient power transmission. Here are some commonly employed gear types in micro gear motors:

1. Spur Gears:

Spur gears are the most basic and commonly used gears in micro gear motors. They have straight teeth and are mounted on parallel shafts. Spur gears provide efficient power transmission with low noise and high efficiency. They are suitable for applications that require high-speed rotation and moderate torque requirements.

2. Helical Gears:

Helical gears are similar to spur gears but have angled teeth. The angled teeth allow for smoother and quieter operation compared to spur gears. Helical gears provide higher torque transmission capabilities and are commonly used in micro gear motors where reducing noise and vibration is important, such as in precision instruments or small appliances.

3. Planetary Gears:

Planetary gears, also known as epicyclic gears, are compact gear systems that consist of a central gear (sun gear), multiple surrounding gears (planet gears), and an outer ring gear (ring gear). Planetary gears offer high torque transmission capabilities in a compact design. They are commonly used in micro gear motors where a high gear ratio and torque multiplication are required, such as in robotics or automation systems.

4. Worm Gears:

Worm gears consist of a worm (a screw-like gear) and a mating gear called a worm wheel. Worm gears provide a high gear reduction ratio and are suitable for applications that require high torque output and low-speed rotation. They are commonly used in micro gear motors for applications such as valve actuators, conveyor systems, or precision positioning devices.

5. Bevel Gears:

Bevel gears have teeth that are cut on conical surfaces and are used to transmit power between intersecting shafts. They are commonly employed in micro gear motors that require changes in direction or angle of power transmission. Bevel gears provide efficient power transfer and can accommodate a wide range of speed and torque requirements.

6. Hypoid Gears:

Hypoid gears are similar to bevel gears but have offset axes. They are used in micro gear motors that require high torque transmission at right angles. Hypoid gears offer efficient power transmission with reduced noise and vibration, making them suitable for applications that require compact and quiet operation.

7. Rack and Pinion:

Rack and pinion gears consist of a linear gear (rack) meshing with a rotational gear (pinion). They are commonly used in micro gear motors for linear motion applications, such as in CNC machines, 3D printers, or small-scale automation systems. Rack and pinion gears provide efficient and precise linear motion control.

These are some of the common types of gears employed in micro gear motors for efficient power transmission. The choice of gear type depends on the specific requirements of the application, including torque, speed, noise level, and space constraints.

China Best Sales Micro DC Gear Motor N20 Smart Lock Speed Regulating Gear Motor   vacuum pump brakesChina Best Sales Micro DC Gear Motor N20 Smart Lock Speed Regulating Gear Motor   vacuum pump brakes
editor by CX 2024-05-14