Product Description
Product Description
model | Number of poles | Phase | Rated voltage | Rated speed | Continuous locked-rotor torque | Rated torque | Rated power | Peak torque |
Units | VDC | RPM | N.m | N.m | W | N.m | ||
42BYA075B030C-02 | 4 | 3 | 24 | 3000 | 0.192 | 0.16 | 50 | 0.48 |
model | Peak current | Torque constant | Back EMF | Motor length | Motor length | voltage range | Range of rotation | weight |
Units | A | Nm/A | V/KRPM | g.cMoment of inertia | mm | VDC | RPM | Kg |
42BYA075B030C-02 | 9.6 | 0.05 | 3.947 | 14.6 | 134 | 24~48 | 1000~3000 | 1.0 |
Product Parameters
Quiet stable and reliable for long life operation
1.Voltage: 24 VDC
2.Number of phases: 3
3.Number of levels: 4
4.Line-to-line resistance: 1.45±10%ohms
5.Line-to-line inductance: 1.27±20%mH
6.Rated current: 3.2A
7.Rated power: 50W
8.No-load speed: 4300 rpm
9.Insulation class: B
10.Reduction ratio: 1:58.22
11.Output torque: 7.5 N.m
12.Output speed: 51.5 rpm
13.We can design the special voltage and shaft and so on
Jintian Imp. & Exp Co. Ltd opened in 2008 to facilitate international trade between China and the rest of the world. The young firm grew quickly, gaining a reputation for integrity, efficiency and astute knowledge of local market.
Throughout its 10 more years history, CHINAMFG has sought to connect customers with opportunities. While that purpose has remained unchanged, CHINAMFG has succeeded by positioning itself where the growth is and by aligning itself to the major economic trends of the time.
After being funded in ZheJiang , China to facilitate local and international trade, CHINAMFG expanded rapidly to capture the increasing flow of commerce between Asia, Europe and North America. Since then, CHINAMFG has continued to grow in line with changing trade patterns and developing markets, pioneering modern international trade practices in many countries. Built over 10 years, this global network is highly distinctive, difficult to replicate and ideally positioned for the world’s top trade corridors.
Our ability to connect customers remains absolutely central to the company’s strategy today, which aims to establish CHINAMFG as the world”s leading international trade company. Above all, we remain dedicated to the purpose that CHINAMFG was founded to serve: Connecting customers to opportunities, enabling businesses to CHINAMFG and economies to prosper, and helping people to fulfill their hopes and dreams.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industrial |
---|---|
Speed: | High Speed |
Number of Stator: | Three-Phase |
Samples: |
US$ 162/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
What role do materials play in the design and manufacturing of reliable micro gear motors?
Materials play a critical role in the design and manufacturing of reliable micro gear motors. Here’s how they contribute:
- Gear Material: The choice of material for the gears is crucial for the overall performance and reliability of micro gear motors. Gears are subjected to high loads, friction, and wear during operation. Common materials used for gears include steel, stainless steel, brass, and various engineering plastics. The selected material should have high strength, good wear resistance, and low friction characteristics to ensure smooth and efficient power transmission, minimize gear failure, and prolong the motor’s lifespan.
- Motor Housing: The material used for the motor housing affects its durability, thermal management, and protection against environmental factors. Common materials for motor housings include aluminum, stainless steel, and engineering plastics. The housing should provide structural integrity, efficient heat dissipation, and protection against dust, moisture, and other contaminants to maintain the motor’s reliability and performance in various operating conditions.
- Bearing Materials: Bearings are essential components in micro gear motors as they reduce friction and enable smooth rotation of the motor shaft. The choice of bearing material is crucial for ensuring reliable and long-lasting operation. Common bearing materials include stainless steel, ceramics, and various self-lubricating materials. The selected material should have low friction, high load-bearing capacity, and resistance to wear and corrosion to minimize power losses, maintain efficiency, and extend the motor’s lifespan.
- Magnetic Materials: In motors that utilize permanent magnets, such as brushless DC (BLDC) motors, the choice of magnetic material is crucial for generating and maintaining magnetic fields. Neodymium magnets are commonly used due to their high magnetic strength and energy efficiency. The quality and characteristics of the magnetic material directly impact the motor’s performance, torque output, and overall efficiency.
- Electrical Insulation: Micro gear motors often involve the flow of electrical current through the motor windings. Insulation materials, such as enamel or varnish, are used to electrically isolate the windings and prevent short circuits. The selected insulation material should have high dielectric strength, good thermal stability, and resistance to environmental factors to ensure reliable electrical insulation and prevent motor failures.
By carefully selecting appropriate materials for gears, motor housing, bearings, magnetic components, and electrical insulation, designers and manufacturers can optimize the reliability, efficiency, and performance of micro gear motors. The materials should be chosen based on the specific requirements of the application, considering factors such as load capacity, operating conditions, environmental factors, and cost-effectiveness.
Can you provide examples of innovative uses of micro gear motors in modern technology?
Micro gear motors have found innovative applications across various modern technologies. Here are some examples:
- Drones: Micro gear motors are commonly used in drones to drive the propellers and control the flight. Their compact size, lightweight design, and precise control capabilities make them ideal for achieving stable and agile flight maneuvers.
- Robotics: Micro gear motors play a crucial role in robotics, powering the joints and actuators of robotic arms, grippers, and humanoid robots. Their precise control, compact form factor, and high torque-to-size ratio enable robots to perform delicate and precise manipulations in industrial automation, medical procedures, and research applications.
- Automotive Systems: Micro gear motors are used in various automotive systems, such as power windows, door locks, and seat adjustments. Their small size and high torque allow for efficient and reliable operation of these mechanisms within the limited space available in vehicles.
- Medical Devices: Micro gear motors are utilized in medical devices and equipment, including surgical robots, prosthetics, insulin pumps, and lab automation systems. Their precise control, compact size, and low power consumption make them suitable for applications requiring fine movements, accurate dosing, and miniaturization.
- Consumer Electronics: Micro gear motors are incorporated into numerous consumer electronic devices. They can be found in cameras for lens movement and autofocus, wearable devices for haptic feedback and vibration, and home appliances for precise control of valves, fans, and robotic components.
- Smart Home Systems: Micro gear motors are employed in smart home systems to control various functions, such as motorized curtains, blinds, and awnings. Their precise control, quiet operation, and compatibility with automation systems allow for convenient and customizable control of these home features.
These examples represent just a few of the many innovative uses of micro gear motors in modern technology. Their versatility, precision, and compact design make them valuable components in a wide range of applications, contributing to advancements in automation, robotics, electronics, and beyond.
In which applications are micro gear motors commonly used due to their compact size?
Micro gear motors find applications in various industries where their compact size is advantageous. Here are some common applications where micro gear motors are commonly used:
1. Micro Robotics:
Micro gear motors are extensively used in micro robotics applications. These motors provide the necessary torque and precision for controlling the movements of miniature robot platforms, robotic arms, grippers, and other robotic components. Their small size allows for intricate and precise motion control in confined spaces.
2. Medical Devices:
In the medical field, micro gear motors are employed in various devices and equipment, including medical robots, surgical instruments, diagnostic devices, and drug delivery systems. Their compact size enables integration into portable and handheld medical devices while ensuring precise and controlled movements for accurate diagnostics and minimally invasive procedures.
3. Automotive Systems:
Micro gear motors are used in automotive systems that require compact and lightweight actuators. They find applications in power windows, door locks, seat adjustment mechanisms, mirror adjustment, and HVAC controls. The small size of micro gear motors allows for efficient utilization of space within the vehicle while providing reliable and precise operation.
4. Consumer Electronics:
Micro gear motors are found in various consumer electronic devices. They are used in camera autofocus mechanisms, zoom controls, robotic toys, smart home devices, and wearable technology. The compact size of micro gear motors enables seamless integration into these devices, providing precise and controlled motion capabilities.
5. Industrial Automation:
In industrial automation applications, micro gear motors are utilized in small-scale machinery, robotics, and automated systems. They are used in conveyor systems, pick-and-place machines, miniature actuators, and precision positioning systems. The small size and high gearing ratio of micro gear motors allow for accurate and repeatable positioning in tight spaces.
6. Aerospace and Defense:
Micro gear motors are employed in aerospace and defense applications, including drones, unmanned aerial vehicles (UAVs), miniature satellites, and guidance systems. Their compact size and lightweight properties are crucial for reducing the overall weight and improving maneuverability in these applications.
7. Scientific and Laboratory Equipment:
Micro gear motors are used in scientific instruments, laboratory equipment, and research devices. They find applications in precision syringe pumps, sample handling systems, microfluidic devices, and motion control mechanisms for optical instruments. The compact size and precise motion control capabilities of micro gear motors support accurate and controlled experimentation and analysis.
8. Industrial and Manufacturing:
In industrial and manufacturing settings, micro gear motors are utilized in small-scale machinery, conveyors, packaging equipment, and assembly systems. They provide compact and efficient motion control for precise material handling, part positioning, and automation processes.
These are just a few examples of the many applications where micro gear motors are commonly used due to their compact size. Their small form factor and precise motion control capabilities make them ideal for applications where space constraints, weight reduction, and accurate motion control are crucial factors.
editor by CX 2024-05-17
China supplier 110mm NEMA42 310VDC Electric Car Brushless DC Planetary Gear Servo BLDC Motor for Pump Fan Chain Grinder 3000rpm motor electric
Product Description
110mm-BLDC-motor
Specification:
/General Specification | |
(Item) | (Specification) |
Winding type | Star |
Hall effect angle | 120 120 degree electrical angle |
Shaft run out | 0.571mm |
Radial play | 0.02mm@450g |
End play | 0.08mm@450g |
Max.radial force | 300N @20mm form the flange |
Max.axial force | 70N |
Insulation class | Class F |
Dielectric strength | 1200VDC for 1 minute |
Insulation resistance | 100MΩ Min.,500VDC |
/Electrical Specification: | |||||
/Model | |||||
Specification | Unit | JK110BLS01 | JK110BLS02 | JK110BLS03 | JK110BLS04 |
Number Of Phase | Phase | 3 | |||
Number Of Poles | Poles | 8 | |||
Rated Voltage | VDC | 310 | |||
Rated Speed | Rpm | 3000 | |||
Rated Torque | N.m | 1.65 | 3.3 | 5 | 6.6 |
Rated Current | Amps | 1.5 | 3.7 | 5.6 | 7.5 |
Rated Power | W | 518 | 1036 | 1570 | 2073 |
Peak Torque | N.m | 5 | 10 | 15 | 20 |
Peak Current | Amps | 4.5 | 11 | 17 | 22.5 |
Back E.M.F | V/Krpm | 94.5 | 94 | 93 | 92.8 |
Torque Constant | N.m/A | 0.9 | 0.9 | 0.89 | 0.89 |
Rotor Inertia | Kg.c | 1.5 | 3 | 4.5 | 6 |
Body Length | mm | 83 | 113 | 143 | 173 |
Weight | Kg | 3.3 | 4.5 | 5.8 | 7 |
Sensor | /Honeywell | ||||
Insulation Class | B | ||||
Degree of Protection | IP30 | ||||
Storage Temperature | -25~+70ºC | ||||
Operating Temperature | -15~+50ºC | ||||
Working Humidity | 85% RH() | ||||
Altitude | 1000 |
Drawing:
Company Profile:
1. who are we?
We are based in ZheJiang , China, start from 2011,sell to Domestic Market(26.00%),Western Europe(20.00%),North
America(20.00%),Northern Europe(10.00%),Eastern Europe(7.00%),Africa(5.00%),Southeast Asia(5.00%),Mid East(5.00%),South America(2.00%). There are total about 51-100 people in our office.
2. how can we guarantee quality?
We are based in ZheJiang , China, start from 2011,sell to Domestic Market(26.00%),Western Europe(20.00%),North
America(20.00%),Northern Europe(10.00%),Eastern Europe(7.00%),Africa(5.00%),Southeast Asia(5.00%),Mid East(5.00%),South America(2.00%). There are total about 51-100 people in our office.
3.what can you buy from us?
Always a pre-production sample before mass production;
Always final Inspection before shipment;
4. why should you buy from us not from other suppliers?
Professional one-to-1 motor customized . The world’s large enterprise of choice for high quality suppliers . ISO9001:2008 quality management system certification, through the CE, ROHS certification.
5. what services can we provide?
Accepted Delivery Terms: FOB,CFR,CIF,EXW,CIP,FCA,CPT,DDP,DDU,Express Delivery,DAF,DES;
Accepted Payment Currency:USD,EUR,CAD,HKD,GBP,CNY;
Accepted Payment Type: T/T,L/C,D/P D/A,MoneyGram,Credit Card,PayPal,Western Union,Cash,Escrow;
Language Spoken:English,Chinese
Application: | Universal, Industrial, Household Appliances, Car, Power Tools |
---|---|
Operating Speed: | High Speed |
Excitation Mode: | Excited |
Function: | Control |
Casing Protection: | Closed Type |
Number of Poles: | 8 |
Samples: |
US$ 200/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Dynamic Modeling of a Planetary Motor
A planetary gear motor consists of a series of gears rotating in perfect synchrony, allowing them to deliver torque in a higher output capacity than a spur gear motor. Unlike the planetary motor, spur gear motors are simpler to build and cost less, but they are better for applications requiring lower torque output. That is because each gear carries the entire load. The following are some key differences between the two types of gearmotors.
planetary gear system
A planetary gear transmission is a type of gear mechanism that transfers torque from one source to another, usually a rotary motion. Moreover, this type of gear transmission requires dynamic modeling to investigate its durability and reliability. Previous studies included both uncoupled and coupled meshing models for the analysis of planetary gear transmission. The combined model considers both the shaft structural stiffness and the bearing support stiffness. In some applications, the flexible planetary gear may affect the dynamic response of the system.
In a planetary gear device, the axial end surface of the cylindrical portion is rotatable relative to the separating plate. This mechanism retains lubricant. It is also capable of preventing foreign particles from entering the planetary gear system. A planetary gear device is a great choice if your planetary motor’s speed is high. A high-quality planetary gear system can provide a superior performance than conventional systems.
A planetary gear system is a complex mechanism, involving three moving links that are connected to each other through joints. The sun gear acts as an input and the planet gears act as outputs. They rotate about their axes at a ratio determined by the number of teeth on each gear. The sun gear has 24 teeth, while the planet gears have three-quarters that ratio. This ratio makes a planetary motor extremely efficient.
planetary gear train
To predict the free vibration response of a planetary motor gear train, it is essential to develop a mathematical model for the system. Previously, static and dynamic models were used to study the behavior of planetary motor gear trains. In this study, a dynamic model was developed to investigate the effects of key design parameters on the vibratory response. Key parameters for planetary gear transmissions include the structure stiffness and mesh stiffness, and the mass and location of the shaft and bearing supports.
The design of the planetary motor gear train consists of several stages that can run with variable input speeds. The design of the gear train enables the transmission of high torques by dividing the load across multiple planetary gears. In addition, the planetary gear train has multiple teeth which mesh simultaneously in operation. This design also allows for higher efficiency and transmittable torque. Here are some other advantages of planetary motor gear trains. All these advantages make planetary motor gear trains one of the most popular types of planetary motors.
The compact footprint of planetary gears allows for excellent heat dissipation. High speeds and sustained performances will require lubrication. This lubricant can also reduce noise and vibration. But if these characteristics are not desirable for your application, you can choose a different gear type. Alternatively, if you want to maintain high performance, a planetary motor gear train will be the best choice. So, what are the advantages of planetary motor gears?
planetary gear train with fixed carrier train ratio
The planetary gear train is a common type of transmission in various machines. Its main advantages are high efficiency, compactness, large transmission ratio, and power-to-weight ratio. This type of gear train is a combination of spur gears, single-helical gears, and herringbone gears. Herringbone planetary gears have lower axial force and high load carrying capacity. Herringbone planetary gears are commonly used in heavy machinery and transmissions of large vehicles.
To use a planetary gear train with a fixed carrier train ratio, the first and second planets must be in a carrier position. The first planet is rotated so that its teeth mesh with the sun’s. The second planet, however, cannot rotate. It must be in a carrier position so that it can mesh with the sun. This requires a high degree of precision, so the planetary gear train is usually made of multiple sets. A little analysis will simplify this design.
The planetary gear train is made up of three components. The outer ring gear is supported by a ring gear. Each gear is positioned at a specific angle relative to one another. This allows the gears to rotate at a fixed rate while transferring the motion. This design is also popular in bicycles and other small vehicles. If the planetary gear train has several stages, multiple ring gears may be shared. A stationary ring gear is also used in pencil sharpener mechanisms. Planet gears are extended into cylindrical cutters. The ring gear is stationary and the planet gears rotate around a sun axis. In the case of this design, the outer ring gear will have a -3/2 planet gear ratio.
planetary gear train with zero helix angle
The torque distribution in a planetary gear is skewed, and this will drastically reduce the load carrying capacity of a needle bearing, and therefore the life of the bearing. To better understand how this can affect a gear train, we will examine two studies conducted on the load distribution of a planetary gear with a zero helix angle. The first study was done with a highly specialized program from the bearing manufacturer INA/FAG. The red line represents the load distribution along a needle roller in a zero helix gear, while the green line corresponds to the same distribution of loads in a 15 degree helix angle gear.
Another method for determining a gear’s helix angle is to consider the ratio of the sun and planet gears. While the sun gear is normally on the input side, the planet gears are on the output side. The sun gear is stationary. The two gears are in engagement with a ring gear that rotates 45 degrees clockwise. Both gears are attached to pins that support the planet gears. In the figure below, you can see the tangential and axial gear mesh forces on a planetary gear train.
Another method used for calculating power loss in a planetary gear train is the use of an auto transmission. This type of gear provides balanced performance in both power efficiency and load capacity. Despite the complexities, this method provides a more accurate analysis of how the helix angle affects power loss in a planetary gear train. If you’re interested in reducing the power loss of a planetary gear train, read on!
planetary gear train with spur gears
A planetary gearset is a type of mechanical drive system that uses spur gears that move in opposite directions within a plane. Spur gears are one of the more basic types of gears, as they don’t require any specialty cuts or angles to work. Instead, spur gears use a complex tooth shape to determine where the teeth will make contact. This in turn, will determine the amount of power, torque, and speed they can produce.
A two-stage planetary gear train with spur gears is also possible to run at variable input speeds. For such a setup, a mathematical model of the gear train is developed. Simulation of the dynamic behaviour highlights the non-stationary effects, and the results are in good agreement with the experimental data. As the ratio of spur gears to spur gears is not constant, it is called a dedendum.
A planetary gear train with spur gears is a type of epicyclic gear train. In this case, spur gears run between gears that contain both internal and external teeth. The circumferential motion of the spur gears is analogous to the rotation of planets in the solar system. There are four main components of a planetary gear train. The planet gear is positioned inside the sun gear and rotates to transfer motion to the sun gear. The planet gears are mounted on a joint carrier that is connected to the output shaft.
planetary gear train with helical gears
A planetary gear train with helical teeth is an extremely powerful transmission system that can provide high levels of power density. Helical gears are used to increase efficiency by providing a more efficient alternative to conventional worm gears. This type of transmission has the potential to improve the overall performance of a system, and its benefits extend far beyond the power density. But what makes this transmission system so appealing? What are the key factors to consider when designing this type of transmission system?
The most basic planetary train consists of the sun gear, planet gear, and ring gear elements. The number of planets varies, but the basic structure of planetary gears is similar. A simple planetary geartrain has the sun gear driving a carrier assembly. The number of planets can be as low as two or as high as six. A planetary gear train has a low mass inertia and is compact and reliable.
The mesh phase properties of a planetary gear train are particularly important in designing the profiles. Various parameters such as mesh phase difference and tooth profile modifications must be studied in depth in order to fully understand the dynamic characteristics of a PGT. These factors, together with others, determine the helical gears’ performance. It is therefore essential to understand the mesh phase of a planetary gear train to design it effectively.
editor by CX 2023-04-20